Принципиальная схема блока питания к телефонам. Зарядное устройство мобильного телефона LG (принципиальная схема и ремонт)

Представляю очередное устройство из серии «Не Брать!»
В комплект прилагается простенький кабель microUSB, который буду тестировать отдельно с кучей других шнурков.
Заказал эту зарядку ради любопытства, зная, что в таком компактном корпусе крайне сложно сделать надёжное и безопасное устройство сетевого питания 5В 1А. Реальность оказалась суровой…

Пришло в стандартном пакетике с пупыркой.
Корпус глянцевый, обёрнут защитной плёнкой.
Габаритные размеры с вилкой 65х34х14мм








Зарядка сразу оказалась нерабочей - хорошее начало…
Пришлось в начале устройство разбирать и ремонтировать, чтобы иметь возможность тестировать.
Разбирается очень просто - на защёлках самой вилки.
Дефект обнаружился сразу - отвалился один из проводков к вилке, пайка оказалась некачественной.


Вторая пайка не лучше


Сам монтаж платы выполнен нормально (для китайцев), пайка хорошая, плата отмыта.






Реальная схема устройства


Какие проблемы были обнаружены:
- Довольно слабое крепление вилки с корпусом. Не исключена возможность остаться ей оторванной в розетке.
- Отсутствие предохранителя по входу. Видимо те самые проводочки к вилке и являются защитой.
- Однополупериодный входной выпрямитель - неоправданная экономия на диодах.
- Малая ёмкость входного конденсатора (2,2мкФ/400В). Для работы однополупериодного выпрямителя ёмкость явно недостаточна, что приведёт к повышенным пульсациям напряжения на нём на частоте 50Гц и к уменьшению срока его службы.
- Отсутствие фильтров по входу и выходу. Невелика потеря для такого маленького и маломощного устройства.
- Простейшая схема преобразователя на одном слабеньком транзисторе MJE13001.
- Простой керамический конденсатор 1нФ/1кВ в помехоподавляющей цепи (показал отдельно на фото). Это грубое нарушение безопасности устройства. Конденсатор должен быть класса не менее Y2.
- Отсутствует демпферная цепь гашения выбросов обратного хода первичной обмотки трансформатора. Этот импульс частенько пробивает силовой ключевой элемент при его нагреве.
- Отсутствие защит от перегрева, от перегрузки, от короткого замыкания, от повышения выходного напряжения.
- Габаритная мощность трансформатора явно не тянет на 5Вт, а его очень миниатюрный размер ставит под сомнение наличие нормальной изоляции между обмотками.

Теперь тестирование.
Т.к. устройство изначально не является безопасным, подключение производил через дополнительный сетевой предохранитель. Если уж что случится - хотя-бы не обожжёт и не оставит без света.
Проверял без корпуса, чтобы можно было контролировать температуру элементов.
Выходное нгапряжение без нагрузки 5,25В
Потребляемая мощность без нагркзки менее 0,1Вт
Под нагрузкой 0,3А и менее зарядка работает вполне адекватно, напряжение держит нормально 5,25В, пульсации на выходе незначительные, ключевой транзистор греется в пределах нормы.
Под нагрузкой 0.4А напряжение начинает немного гулять в диапазоне 5,18В - 5,29В, пульсации на выходе 50Гц 75мВ, ключевой транзистор греется в пределах нормы.
Под нагрузкой 0,45А напряжение начинает заметно гулять в диапазоне 5,08В - 5,29В, пульсации на выходе 50Гц 85мВ, ключевой транзистор начинает потихоньку перегреваться (обжигает палец), трансформатор тёпленький.
Под нагрузкой 0,50А напряжение начинает сильно гулять в диапазоне 4,65В - 5,25В, пульсации на выходе 50Гц 200мВ, ключевой транзистор перегрет, трансформатор также довольно сильно нагрет.
Под нагрузкой 0,55А напряжение дико прыгает в диапазоне 4,20В - 5,20В, пульсации на выходе 50Гц 420мВ, ключевой транзистор перегрет, трансформатор также довольно сильно нагрет.
При ещё большем увеличении нагрузки, напряжение резко проседает до неприличных величин.

Выходит, данная зарядка реально может выдавать максимум 0,45А вместо заявленных 1А.

Далее, зарядка была собрана в корпус (вместе с предохранителем) и оставлена в работе на пару часов.
Как ни странно, зарядка не вышла из строя. Но это вовсе не означает, что она является надёжной - имея такую схемотехнику долго ей не протянуть…
В режиме короткого замыкания зарядка тихо умерла через 20 секунд после включения - произошёл обрыв ключевого транзистора Q1, резистора R2 и оптрона U1. Даже дополнительно установленный предохранитель не успел сгореть.

Для сравнения, покажу как выглядит внутри простейшая китайская зарядка 5В 2А от планшета, изготовленная с соблюдением минимально-допустимых норм безопасности.



Пользуясь случаем, сообщаю, что драйвер светильника из предыдущего обзора был успешно доработан, статья дополнена.

Интересно, из чего же состоит зарядное устройство (блок питания) Сименса и возможно ли его починить самостоятельно в случае поломки.

Для начала блок нужно разобрать. Судя по швам на корпусе этот блок не предназначен для разборки, следовательно вещь одноразовая и больших надежд в случае поломки можно не возлагать.

Мне пришлось в прямом смысле раскурочить корпус зарядного устройства, оно состоит из двух плотно склеенных частей.

Внутри примитивная плата и несколько деталей. Интересно то, что плата не припаяна к вилке 220в., а крепится к ней при помощи пары контактов. В редких случаях эти контакты могут окислиться и потерять контакт, а вы подумаете, что блок сломался. А вот толщина проводов, идущих к разъему на мобильный телефон, приятно порадовала, не часто встретишь в одноразовых приборах нормальный провод, обычно он такой тонкий, что даже дотрагиваться до него страшно).

На тыльной стороне платы оказалось несколько деталей, схема оказалась не такой простой, но все равно она не такая и сложная, чтобы не починить ее самостоятельно.

Ниже на фото контакты внутки корпуса.

В схеме зарядного устройства нет понижающего трансформатора, его роль играет обычный резистор. Далее как обычно парочка выпрямляющих диодов, пара конденсаторов для выпрямления тока, после идет дроссель и наконец стабилитрон с конденсатором завершают цепочку и выводят пониженное напряжение на провод с разъемом к мобильному телефону.

В разъеме всего два контакта.

Большинство современных мобильных телефонов, смартфонов, планшетов и других носимых гаджетов, поддерживает зарядку через гнездо USB mini-USB или micro-USB. Правда до единого стандарта пока далеко и каждая фирма старается сделать распиновку по-своему. Наверное чтоб покупали зарядное именно у неё. Хорошо хоть сам ЮСБ штекер и гнездо сделали стандартным, а также напряжение питания 5 вольт. Так что имея любое зарядное-адаптер, можно теоретически зарядить любой смартфон. Как? и читайте далее.

Распиновка USB разъемов для Nokia, Philips, LG, Samsung, HTC

Бренды Nokia, Philips, LG, Samsung, HTC и многие другие телефоны распознают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены. Закоротить их можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель.

Распиновка USB разъемов на штекере

Если зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini-USB или micro-USB, то не нужно соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус - на 5-й (последний).

Распиновка USB разъемов для Iphone

У Айфонов контакты Data+ (2) и Data- (3) должны соединяться с контактом GND (4) через резисторы 50 кОм, а с контактом +5V через резисторы 75 кОм.

Распиновка зарядного разъема Samsung Galaxy

Для заряда Самсунг Галакси в штекере USB micro-BM должен быть установлен резистор 200 кОм между 4 и 5 контактами и перемычка между 2 и 3 контактами.

Распиновка USB разъемов для навигатора Garmin

Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм.

Схемы цоколёвки для зарядки планшетов

Практически любому планшетному компьютеру для заряда требуется большой ток — раза в 2 больше чем смартфону, и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер. Поэтому ставится отдельное гнездо (часто круглого типа). Но и его можно адаптировать под мощный ЮСБ источник питания, если спаять вот такой переходник.

Распиновка зарядного гнезда планшета Samsung Galaxy Tab

Для правильного заряда планшета Samsung Galaxy Tab рекомендуют другую схему: два резистора: 33 кОм между +5 и перемычкой D-D+; 10 кОм между GND и перемычкой D-D+.

Распиновка разъёмов зарядных портов

Вот несколько схем напряжений на контактах USB с указанием номинала резисторов, позволяющих эти напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать это значение.

Классификация портов Charger

  • SDP (Standard Downstream Ports) – обмен данными и зарядка, допускает ток до 0,5 A.
  • CDP (Charging Downstream Ports) – обмен данными и зарядка, допускает ток до 1,5 A; аппаратное опознавание типа порта (enumeration) производится до подключения гаджетом линий данных (D- и D+) к своему USB-приемопередатчику.
  • DCP (Dedicated Charging Ports) – только зарядка, допускает ток до 1,5 A.
  • ACA (Accessory Charger Adapter) – декларируется работа PD-OTG в режиме Host (с подключением к PD периферии – USB-Hub, мышка, клавиатура, HDD и с возможностью дополнительного питания), для некоторых устройств – с возможностью зарядки PD во время OTG-сессии.

Как переделать штекер своими руками

Теперь у вас есть схема распиновки всех популярных смартфонов и планшетов, так что если имеете навык работы с паяльником — не будет никаких проблем с переделкой любого стандартного USB-разъема на нужный вашему девайсу тип. Любая стандартная зарядка, которая основывается на использовании USB, предусматривает использование всего лишь двух проводов – это +5В и общий (минусовой) контакт.

Просто берёте любую зарядку-адаптер 220В/5В, от неё отрезаете ЮСБ коннектор. Отрезанный конец полностью освобождается от экрана, в то время как остальные четыре провода зачищаются и залуживаются. Теперь берем кабель с разъемом USB нужного типа, после чего также отрезаем от него лишнее и проводим ту же самую процедуру. Теперь остается просто спаять между собой провода согласно схемы, после чего соединение изолировать каждое отдельно. Полученное в итоге дело сверху заматывается изолентой или скотчем. Можно залить термоклеем — тоже нормальный вариант.

Бонус: все остальные разъёмы (гнёзда) для мобильных телефонов и их распиновка доступны в единой большой таблице — .


Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.

В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны - если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи - но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.


Рис. 1
Простая импульсная схема блокинг-генератора


Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт - тогда при перегрузке он сгорит, выполнив функцию предохранителя.

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних - положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает... То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ - поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора - то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II - генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока - выходное напряжение гуляет в пределах 15...25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2


Рис. 2
Электрическая схема более сложного
преобразователя


Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор, резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 - как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении - 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным - идеально BYV26C, чуть хуже - UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250...350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 - она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10...20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому - для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II - 30 витков тем же проводом, обмотка III - 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник - стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.

Короче заебала меня родная зарядка к телефону нокиа с отэм, сука, милипиздрическим разъемом:

Вечно отходит, вываливается. Говно короче.

Благо у телефона есть, уже ставший стандартом, разъем микроЮСБ. Ну у моего, по крайней мере, есть. Да, и за нокию не пинать, телефон у меня для связи. Для развлечений планшет. (типа выебнулся). Так вот через этот разъем телефон отлично заряжается, если есть зарядка.

А тут еще на днях принесли очередную, отжившую свой короткий век, "оригинальную" китайскую зарядку нокиа. Мне их сносят время от времени сотрудники. Не знаю нахуя, я их не чиню никому, ну окромя этого случая, и то поскольку для себя Видать из за паяльника на столе и особой репутации в нашей конторе. Ну не суть. Была она с именно вот тем правильным микроЮСБ разъемом:

Сразу скажу самое простое было бы перепаять шнурок к родной зарядке, но я не искал простых путей. Ибо приобретенный опыт, хоть и мал, но весьма полезен. Кстати еще можно купить новую зарядку, но это затраты, время на поездку. Я то забываю, то лень.

Делюсь впечатлениями, опытом, ну и немного юмора не помешает.

Заебашил я себе кофейку, дабы листая гугл на предмет типичных ситуаций с зарядками, советы бывалых, ремонтные случаи, не уснуть. Толку мало дало, ибо тысячи их, если не миллиарды, как китайцев. Хотя дало общее представление схемотехники зарядок и понимание хуйовая, или совсем пиздец.

Застелил я стол черновичком, достал несколько подходящих трупиков, воткнул паяльничек в розетку, раскрутил для дефектовки:

Зарядка с правильным шнурком пошла по миру крепко. Выгорело практически все полупроводниковое содержание:

Вторая из закромов, хз от чего, без шнурка, выглядела живенько, но не работала:

На всякий, у меня был еще рабочий блок питания, хз от чего, но с довольно грамотной схемотехникой, только вздутый кондер поменять:

Но я его пожалел и отложил в сторону. В случае невозможности починить что нить из первых двух, я бы взялся за него.

По пути малого сопротивления дефектовка второй зарядки показала сгоревший диод и резистор, кои хитрые китайцы, из за удешевления, используют как предохранители. Выпаиваю:

Вид с другой стороны. Кстати схемотехника нормального уровня, на порядок лучше первой зарядки:

Первую решено использовать как донора, диод норм, а резистор уже сгоревший:

Нашел в закромах аналог, чем чуть позже поплатился:

ВНИМАНИЕ! АХТУНГ! ВОРНИНГ!

Запаял я диод и резистор, ткнул в розетку, и загоревшийся светодиод весело зазеленел:

Есть контакт.

"Резистор слабоват" сказала зарядка, и грустный сизый дымок подтвердил её слова.

Ладно сказал я, и полез в закрома в поисках аналога. Попутно найдя варистор и дроссель, на которых сэкономили узкоглазые. Перезапаиваю:

Новые тест, все ок (фото не особо получилось).