Подготовка кромок под сварку. Подготовка металла под сварку Геометрические характеристики формы подготовки кромок под сварку

Оглавление книги Следующая страница>>

Подготовка кромок под сварку. Форма подготовленных кромок под сварку .

Подготовка кромок под сварку. К элементам геометрической формы подготовки кромок под сварку (рис. 25) относятся угол разделки кромок α, притупление кромок S, длина скоса листа L при наличии разности толщин металла, смещение кромок относительно друг друга б, зазор между стыкуемыми кромками а.


Рис. 25. Элементы геометрической формы подготовки кромок под сварку (а) и шва (б):

в - ширина шва, h - высота шва, К - катет шва

Угол разделки кромок выполняется при толщине металла более 3 мм, поскольку ее отсутствие (разделки кромок) может привести к непровару по сечению сварного соединения, а также к перегреву и пережогу металла; при отсутствии разделки кромок для обеспечения провара электросварщик должен увеличивать величину сварочного тока.

Разделка кромок позволяет вести сварку отдельными слоями небольшого сечения, что улучшает структуру сварного соединения и уменьшает возникновение сварочных напряжений и деформаций.

Зазор, правильно установленный перед сваркой, позволяет обеспечить полный провар по сечению соединения при наложении первого (корневого) слоя шва, если подобран соответствующий режим сварки.

Длиной скоса листа регулируется плавный переход от толстой свариваемой детали к более тонкой, устраняются концентраторы напряжений в сварных конструкциях.

Притупление кромок выполняется для обеспечения устойчивого ведения процесса сварки при выполнении корневого слоя шва. Отсутствие притупления способствует образованию прожогов при сварке.

Смещение кромок создает дополнительные сварочные деформации и напряжения, тем самым ухудшая прочностные свойства сварного соединения. Смещение кромок регламентируется либо ГОСТами, либо техническими условиями. Кроме того, смещение кромок не позволяет получать монолитного сварного шва по сечению свариваемых кромок.

ГОСТ 5264-80 предусматривает для стыковых соединений формы подготовленных кромок, представленные на рис. 26; для угловых соединений - на рис. 27; тавровых - на рис. 28 и нахлесточных - на рис. 29.

Рис. 26. Форма подготовленных кромок под сварку для стыковых соединений

Рис. 27. Форма подготовленных кромок под сварку для угловых соединений


Рис. 28. Форма подготовленных кромок под сварку для тавровых соединений

Рис. 29. Форма подготовленных кромок под сварку для нахлесточных соединений

Подготовку кромок под сварку выполняют на механических станках -токарных (обработка торцов труб), фрезерных, строгальных - обработка листов и т. д., а также применением термической резки. Листы, трубы, изготовленные из углеродистых сталей, обрабатываются газокислородной резкой. В качестве горючих газов могут служить ацетилен, пропан, коксовый газ и т. д. Цветные металлы, а также нержавеющие стали обрабатываются плазменной резкой.

Перед сваркой особо ответственных конструкций торцы труб или листов после газокислородной резки обрабатывают дополнительно механическим путем; это делается для того, чтобы избежать каких-либо включений в металле.

Самое элементарное, что нужно знать начинающему сварщику, это то, как соприкасаются между собой сварные детали. В зависимости от проектного положения, по правилам ГОСТ и СНиП существуют разные виды сварных соединений, как показано на рисунке ниже. Это касается не только пластин, но и уголков, швеллеров, труб, квадратов и других прокатных изделий.

Ни одно более-менее серьезное строительное производство не обходится без применения низкой и средней мощности. В меньшем количестве случаев (когда нет доступа к электричеству) виды сварных швов выполняются , которая менее распространена по причине ее большей громоздкости.

В любом случае, мало знать и уметь пользоваться сварочным аппаратом для того, чтобы сварить те или иные детали. Важно знать, какие бывают виды сварного шва, то есть, как производить обработку кромок деталей для их состыковки, фиксации в том или ином пространственном положении и дальнейшей их сварки.

Как правило, тот или иной вид шва сварного соединения формируется при помощи электроинструмента – болгарка с двумя типами кругов: отрезной по металлу и угловой шлифовальный. Первый предназначен для обрезки детали под тем или иным углом, второй – для обработки, их отрезных поверхностей, шлифованию, чтобы они ровно прилегали друг к другу. Кроме того, сам сварочный аппарат способен работать в режиме резки.

В данном случае обе детали соединяются торцами, которые заранее специальным образом обрабатывают, либо оставляют необработанными. Это зависит от толщины металла деталей, стыковое соединение которых предполагается выполнить.

Также стоит обратить внимание (рис) на то, что может быть обработан торец только одной детали, что позволяет уменьшить расход металла, сварочной проволоки при солидной толщине деталей. Кроме этого, виды стыковых соединений могут быть обработаны с одной стороны – для односторонней сварки и с двух сторон – для двусторонней сварки.

Соединение без разделки не обрабатывается каким-либо образом, только возможно убираются зазубрины, неровности и шероховатости, чтобы совершить состыковку с зазором не более 2 мм, как положено по ГОСТ. Бывает односторонним и двухсторонним, соответственно рассчитано на сварные стыковые соединения деталей, толщина металла которых не превышает 4 мм и 8 мм соответственно.

Соединение со скосом торцов выполняется во многих вариациях, как показано на рис. Это может быть и односторонний ровный/овальный скос кромки, и двусторонняя разделка, так называемый V-образный, U-образный скос. Применяются все эти типы стыковых соединений для деталей с толщиной металла 4-25 мм с зазором 1-2 мм.

Соединение с двусторонней разделкой имеет смысл выполнять при толщине свариваемой детали от 12 мм, так как именно с этой величины начиная можно заметить снижение расхода материала для сварки, металла. При этом и сама сварка стыковых соединений происходит быстрее, чем в случае с односторонней разделкой кромок по V-образному или U-образному способу, а расход сварочных материалов уменьшается в два раза как минимум.

Как можно заметить, детали имеют положение, напоминающее букву «Т», отсюда именуется как тавровое соединение, при котором одна деталь находится перпендикулярно относительно второй. Таким образом, сваркой соединяется поверхность кромки одной детали с плоскостной поверхностью второй. Соответственно, обрабатываться разделкой может лишь одна деталь, как на рисунке ниже.

Соединение без разделки сваривается с двух сторон и применяется для деталей одинаковой толщины металла, не превышающей 10 мм. Никакой особой обработки кромки перпендикулярно расположенной детали не применяется, лишь шлифование при необходимости для плотного прилегания кромки к плоскости (до 2 мм зазор). Важно учесть, что сварка тавровых соединений без разделки отличается в случае, если перпендикулярно расположенная (вертикально стоящая) деталь имеет меньшую толщину, чем вторая, горизонтально примыкающая. Просто электрод ставят под углом 60 градусов к более толстой детали, что способствует большему ее плавлению.

Соединение с разделкой выполняется в случае, если требуется особо прочный шов и тавровое сварное соединение имеет перпендикулярно размещающуюся (вертикально стоящую) деталь, толщина металла которой больше, чем 10 мм (как минимум — 8 мм). Это может быть и одностороння и двусторонняя разделка, при этом кромку обрезают прямолинейно, под углом 45 градусов. Так, сварка большой толщины деталей происходит в несколько слоев, пока не заполнится все около разделочное пространство.

В случае, когда производится соединение внахлест, одна деталь располагается на другой, сварка происходит по кромкам обеих деталей. При этом разделки кромок не предусматривается технологически, лишь подготовка для плотного прилегания одной плоскости ко второй. Соединяются детали двумя сварными швами, которые связывают кромки с ближе лежащими плоскостными поверхностями.

Соединение без усиления целесообразнее всего производить при соединение внахлестку деталей, имеющих толщину не более 10 мм. Двойной шов в этом случае выполняют из соображений по герметизации, то есть для того чтобы влага не попадала между нахлестом и не происходил усиленный процесс коррозии. Сам способ соединения называется «соединение внахлестку с лобовыми швами».

Соединение с усилением выполняется при особых требованиях к прочности, а также при большой толщине металла свариваемых изделий. На рисунке показано сварное соединение внахлест с дополнительными сварными креплениями, которые получают путем прогревания нижней и проплавления верхней детали, а также те, которые заранее пропиливают в месте сварного соединения. Кроме вспомогательных креплений, в редких случаях они могут также выполняться без лобовых швов при небольшой толщине изделий, но в таком случае на особую прочность не стоит рассчитывать.

Данное соединение отчасти похоже на тавровое из-за перпендикулярно размещенных сварных деталей. Подобно тавровому, угловое соединение обрабатывается лишь одной стороной кромки, вторая также участвует в сварном процессе, но разделке не подвергается, лишь ровной обрезке строго под 90 градусов и шлифовке от заусениц, зазубрин и т. д., остальных деффектов.

Соединение без разделки кромки, как показано на рис, производится со смещением детали из-под заподлицо второй кромки. При этом сварочный шов соединяет оба торца с наружной стороны, но угловые сварные соединения могут также быть дополнительно усилены и вторым швом, выполненным с внутренней стороны угла. При этом второй шов сваривает внутренние плоскости деталей, при этом увеличивается расход материала для сварки и время сварки, но получается крепчайшее сварное соединение.

Соединения с разделкой кромки применяются в случае большой толщины деталей, как и при тавровых соединениях. Односторонняя или двусторонняя разделка кромки нужна в случае, если выполняется сварка угловых соединений деталей с толщиной от 8 мм до 25 мм. При односторонней разделке выходит очень глубокий шов, в связи с этим сварку производят в 2-3-4 слоя. Двусторонняя V-образная сварка куда более экономичная и быстрая в производстве во многих случаях.

Это была статья про подготовку и состыковку сварных соединений под ручную сварку – малейшая крупинка в познании процессов сварочного производства. Отдельной темой является то, как виды сварных соединений и швов, описанных ранее, произвести тем или иным типом сварки.

Кромки разделывают в целях полного провара заготовок по сечению, что является одним из условий равнопрочности сварного соединения с основным металлом. Формы подготовки кромок под сварку различают V, K, X – образные

При ручной электродуговой сварке основными видами сварных соединений являются стыковые, угловые, тавровые и соединения внахлестку. Стыковые соединения в зависимости от толщины свариваемых листов делятся на несколько типов. При толщине листов от 1 до 3 мм применяются стыковые соединения с отбортовкой кромок.

Листы толщиною от 1 до 8 мм свариваются в стык без подготовки кромок. Для листов толщиною от 1 до 6 мм применяется односторонняя сварка иногда с остающимися или съемными подкладками; листы толщиною от 3-3,5 мм до 8 мм свариваются с двух сторон. Предельная толщина металла в этом случае определяется возможностью проплавления всего сечения с одной или с двух сторон. Для обеспечения провара всего сечения при сварке листов большей толщины делается скос кромок, называемый разделкой кромок.

Для металла толщиной от 3 до 26 мм предусматривается так называемый V-образный односторонний или двусторонний скос кромок. При этих соединениях также могут применяться остающиеся или съемные подкладки. Металл толщиною от 12 до 40 мм может свариваться К-образным соединением, при котором производится двусторонний скос одной только кромки. Для толщин от 20 до 60 мм с целью экономии наплавленного металла может применяться U-образное соединение с криволинейным скосом одной или двух кромок.

Для металла толщиной от 12 до 60 мм делается Х-образная подготовка крсмок, при которой производится двусторонний скос каждой кромки. При Х-образном стыковом соединении для толщин металла от 30 до 60 мм может применяться также двусторонний криволинейный скос двух кромок. Основными конструктивными элементами разделки являются: угол разделки кромок, притупление и зазор в стыке. Угол разделки кромок для V- и Х-образных соединений берут равным 60°, а для V-образного соединения со скосом одной кромки так же, как и для К-образного соединения, равным 50°.

Величина нескошениой части или так называемое притупление составляет 1-2 мм, а величина зазора принимается равной 2 мм. Угловые соединения при толщине металла не более 3 мм могут выполняться с отбортовкой кромок. При больших толщинах, в зависимости от вида углового соединения и толщины свариваемых листов, сварка производится без скоса, а также с односторонним или двусторонним скосом кромок вертикального листа.

Тавровые соединения, применяемые для толщин металла от 2 до 60 мм, также выполняются без скоса или со скосом кромок вертикального листа. Соединения без скоса кромок применяются для толщин от 2 до 30 мм. Такие соединения свариваются как односторонними, так и двусторонними швами. При этом величина зазора может составлять от 0 до 4 мм. Величина катета выбирается в зависимости от толщины листов и условий работы.

Соединения с односторонним скосом кромок выполняются при толщине листов от 4 до 26 мм и двусторонним скосом для толщин металла от 12 до 60 мм. Угол разделки кромок берут равным 50°, а притупление от 1 до 2 мм, величина зазора обычно составляет около 2 мм. Соединения внахлестку выполняются одно- или двусторонние. Швы накладываются сплошные или прерывистые. Соединения внахлестку могут выполняться также с круглыми или удлиненными отверстиям.

Подготовка кромок сварных соединений. Машины термической резки.

I. Введение. Необходимость разделки кромок сварных соединений
Как известно, основными типами сварных соединений, выполняемых электродуговой сваркой плавлением, являются стыковые, угловые, тавровые и нахлёсточные.
При сварке плавлением металла толщиной более 5 мм наибольшей проблемой является получение гарантированного сплошного проплавления. При сварке SAW (автоматической сварке под флюсом) за счет большого тока сварки и высокой скорости подачи присадочной проволоки сплошное проплавление удается получить при толщинах листов до 20 мм, а при сварке на медной формирующей подкладке - и до 30 мм. Однако при сварке ММА (ручной сварке штучным электродом) и MIG/MAG (полуавтоматической сварке в защитных газах) толщина металла 5 мм является пределом, после которого добиться гарантированного проплавления под силу только сварщику высокой квалификации даже при условии применения многопроходной или двусторонней сварке.
Поэтому нормативной документацией устанавливается необходимость выполнения специальной разделки кромок свариваемых листов. Такая разделка выполняется как для стыковых, так и для угловых и тавровых соединений. Весьма важным обстоятельством является и то, что применение разделки кромок свариваемых деталей частот позволяет заменить двустороннюю сварку на одностороннюю, позволяя избежать излишнего тепловложения в металл, и устранить кантовку свариваемых изделий. Это особенно важно при сварке крупногабаритных конструкций и изделий сложной формы с пересекающимися сварными швами в нескольких плоскостях, таких как фермы, балки мостов, судовые конструкции.

I-образная соединение без разделки кромок (носит также название щелевой разделки)
К-образная с прямым одинарным скосом обеих кромок на одной детали с притуплением или без притупления кромки
V-образная с прямым одинарным скосом одной кромки на двух свариваемых деталях без притупления кромки
Y-образная с прямым одинарным скосом одной кромки на двух свариваемых деталях с притуплением кромки
Х-образная с прямым одинарным или двойным скосом обеих кромок на двух свариваемых деталях с притуплением или без притупления кромки
J-образная с криволинейным скосом одной кромки на одной свариваемой детали с притуплением кромки
U-образная с криволинейным скосом одной кромки на двух свариваемых деталях с притуплением кромки
J- и U-образная разделки могут быть односторонними и двусторонними. Чаще всего применяются К-, Y- и Х-образные разделки с одинарным скосом кромок, как более простые в изготовлении (впрочем Y-образную разделку в обиходе обычно называют V-образной). Также существуют формы разделок с прямыми кромками с двойным скосом. Виды различных разделок представлены на Рис. 2 - 7.
Система ГОСТ устанавливает различные формы разделки кромок и формы поперечного сечения сварного шва листовых деталей для различных толщин свариваемых деталей, видов соединений (стыковые, угловые, тавровые) и методов дуговой сварки:
ГОСТ 5264-80 Ручная электродуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры.

ГОСТ 14771-82 Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры.
ГОСТ 8713-82 Автоматическая и полуавтоматическая сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры.
ГОСТ 16098-80 Соединения сварные из двухслойной коррозионно-стойкой стали. Основные типы, конструктивные элементы и размеры.
ГОСТ 11534-75 Ручная электродуговая сварка. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры.
ГОСТ 14806-80 Соединения сварные. Дуговая сварка алюминия и алюминиевых сплавов. Основные типы, конструктивные элементы и размеры.
ГОСТ 27580-88 Дуговая сварка алюминия и алюминиевых сплавов в инертных газах. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры.
ГОСТ 11533-75 Автоматическая сварка под флюсом. Соединения сварные под острыми и тупыми углами. Основные типы, конструктивные элементы и размеры.

Как видно из Рис. 8 и 9, важнейшими элементами подготовленных кромок, устанавливаемыми стандартами, являются угол разделки и величина притупления. Для стыковых соединений с К-, V-, и Х-образными разделками с одинарным скосом кромки угол разделки установлен 50º±5º или 27º±3º, а для соединений с подкладной пластиной - 10º÷12º. Размеры этих элементов определяют форму сварного шва и влияют на величину площади его поперечного сечения. Таким образом, угол разделки и величина притупления напрямую определяют глубину и характер сплошного проплавления, что определяет качество получаемого сварного шва.

II. Методы резки скоса кромок сварных соединений.
Сегодня в технологии подготовке скоса кромок под сварку применяются как термические, так и механические методы резки.
Термические методы - газокислородная (газопламенная), плазменная и лазерная резка.
Механические методы:
- фрезерная обработка скоса кромки,
- строгание скоса кромки,
- резка скоса кромки абразивными кругами,
- резка скоса кромки кромкорезами долбежного типа.

2.1. Термическая резка скоса кромок

Применение термической резки требует подготовленного персонала и специальных мер безопасности, главным образом из-за своей пожароопасности. Возможна резка фаски для К-, V-, и Х-образные разделки с одинарным скосом кромки. Специалистам понятно, что качество кромок, подготовленных с помощью ручной термической резки, практически никогда не соответствует требованиям ГОСТ, и кромки нуждаются в последующей обработке (как минимум зачистка грата абразивными кругами или проволочными щетками).
Газокислородная резка легированных сталей осложнена тем, что во время сгорания углеводородных газов (пропана, ацетилена) в атмосфере кислорода образуется свободный углерод и угарный газ, которые, вступая во взаимодействие с легирующими элементами (прежде всего хромом и никелем), образуют тугоплавкие карбиды; удаление карбидов из зоны резки при температурах газокислородного пламени практически невозможно. Поэтому газокислородная резка, к примеру, нержавеющих хромоникелевых сталей практически невозможна.
Плазменная резка - практически единственный способ выполнять качественную резку высоколегированных сталей и алюминиевых сплавов.
При использовании машинной резки (особенно портальных машин термической резки с ЧПУ), качество кромок выше и размеры элементов разделки могут полностью соответствовать требованиям стандартов. Однако при термической резке (особенно легированных сталей) происходит интенсивное изменение химического состава и свойств поверхностного слоя реза - науглероживание, азотирование, появление рыхлостей - а также интенсивные деформации вырезанных деталей при больших толщинах металла. Рез зачастую требует зачистки для снятия дефектного поверхностного слоя, а полученная кромка имеет пониженную свариваемость и при сварке требует сварщика высокой квалификации (не ниже 5 разряда), особенно, если сварная деталь ответственная и сварное соединение подвергается неразрушающему контролю. Применение в качестве плазмообразующего газа газовых смесей типа Ar/He2, Ar/H2, N2/H2 или хотя бы кислорода существенно снижает степень науглероживания и азотирование поверхностного слоя и делает требования последующей механической зачистки реза неактуальными.
Лазерная резка применяется для весьма ограниченного диапазона толщин из-за высокой стоимости лазеров большой мощности и сложности систем фокусировки и наведения. Так как наиболее оптимальные для лазерной резки толщины лежат в пределах от 0,5 мм до 10 мм, то необходимость в резке скоса кромки для них практически отсутствует. Ручная лазерная резка, очевидно, еще долгое время будет невозможна из-за большой массы оптических головок и высокой опасности для операторов.

2.2. Механическая резка скоса кромок

Механическая обработка позволяет получить поверхность кромки с максимально высокой точностью и качеством поверхности. После механической резки на поверхности кромки отсутствуют задиры, которые могут явиться причиной появления непроваров. Большим преимуществом механической резки является возможность получения прямых кромок с двойным скосом и кромок для J- и U-образная разделки.
Однако механическая обработка имеет много ограничений:
- низкая производительность процесса из-за существования предельной глубины обработки,
- сложность обработки кромок деталей больших размеров,
- сложность обработки деталей криволинейной формы,
- необходимость кантовки деталей при изготовлении двусторонних кромок,
- сложности при резке скоса кромки в монтажных условиях.
Резка скоса кромки профильными абразивными кругами является очень неэкологичной (шум, вибрация, выделение большого количества пыли), требует больших затрат ручного труда и не гарантирует точного соответствия получаемой кромки требованиям ГОСТ. При абразивной резке происходит выкрашивание частиц абразива (тем более интенсивное, чем менее качественные абразивные круги используются); абразивная крошка внедряется в поверхностный слой металла, который становится пластичным из-за интенсивного перегрева. Внедренная крошка имеет острые края и практически не переплавляется во время сварки из-за высокой температуры плавления абразива. После сварки частицы абразива практически гарантируют появление трещин, особенно, если сварной шов работает в условиях знакопеременных нагрузок.

III. Оборудование и инструмент для резки кромок сварных соединений плоских листовых деталей

3.1 Оборудование для термической резки скоса кромок.
Как уже было сказано ранее, основными методами термической резки, используемыми при резке скоса кромки, являются газокислородная и плазменная резка. В зависимости от степени автоматизации различают ручную, механизированную и автоматическую резку. Соответственно и используемое оборудование - ручное, механизированное и автоматическое.

3.1.a) Ручные газовые резаки
Используются для ручной газокислородной резки. Как правило, это стандартные резаки инжекторного типа. Для резки скоса кромки в монтажных условиях это чаще всего используемый метод. Существующие ограничения сводятся к установке максимальной длины газовых шлангов (не более 30 м) и невозможности резки иных материалов, кроме углеродистых и низколегированных сталей. Требует специальных мероприятий для обеспечения техники безопасности. Для повышения точности ручной резки используют различные приспособления, к примеру, роликовые насадки для резаков и различные угловые шаблоны.

3.1.b) Источники плазменной резки с ручными плазмотронами
Применяются для ручной плазменной резки. В качестве плазмообразующего газа обычно используются сжатый воздух или кислород. Наиболее удобны инверторные плазменные источники, имеющие малую массу. Единственным ограничением для применения ручной плазменной резки являются требования техники безопасности, которые не позволяют ручное использование электрических установок свыше определенного соотношения ток - напряжение. В качестве дополнительных приспособлений для резки скоса кромки используют дистанционные рамки, одеваемые на колпак плазмотрона, специальные угловые насадки, устанавливающие определенный угол скоса кромки и роликовые насадки.

3.1.c) Переносные машины термической резки.
Иногда их также называют переносными газорежущими машинами. На самом деле они могут быть оснащены как газопламенными, так и плазменными режущими горелками и используются для механизированной термической резки. Основное применение таких машин - вырезка небольших деталей и резка монтажных припусков.

Конструктивно переносная машина термической резки представляет собой самоходную каретку с регулируемым электрическим приводом, на которой размещены режущие горелки: одна или две газопламенные или одна плазменная. Резаки установлены в кронштейнах, дающих возможность вертикальной и горизонтальной регулировки, а также поворота для резки скоса кромки. Переносные машины, оснащенные одной режущей горелкой, могут использоваться для разделительной резки и резки скоса кромки для V-образной разделки без притупления кромки; оснащение машины двумя горелками позволят резать скосы кромок для Y-образной и X-образной разделок. Иногда на переносную машину устанавливается три горелки, что позволяет резать скосы кромок для К-образной разделки.
Выпускаются два типа переносных машин термической резки - легкие и тяжелые. Легкие машины имеют собственную массу до 10 кг и комплектуются одной режущей горелкой, позволяющей резать металл толщиной не более 100 мм. Тяжелые машины могут весить до 15 - 20 кг и могут комплектоваться двумя или тремя режущими горелками. Тяжелые машины также более приспособлены для комплектации оснащением для плазменной резки, которая требует более высокой скорости, чем газокислородная.

Переносные машины позволяют производить резку как прямых резов с перемещением по направляющим, так и вырезать криволинейные детали (с ручным направлением перемещения или при помощи циркульного устройства) и широко используются в монтажных устройствах.

3.1.d) Портальные машины термической резки.

Наиболее сложный вид оборудования для раскроя листового металла. На портале могут быть установлены несколько режущих суппортов, оснащенных горелками как для газокислородной, так и для плазменной резки. Оснащены компьютерными системами управления, которые позволяют вырезать детали с высокой точностью и небольшим количеством отходов. Резка скоса кромки для газокислородных и плазменных режущих суппортов осуществляется по разному. Газокислородные режущие суппорты оснащаются так называемыми трехрезаковыми блоками, которые представляют собой зубчатый сектор, установленный на суппорте и поворачивающийся вокруг вертикальной оси (см. Рис. 15). Режущие горелки крепятся на зубчатом секторе: одна горелка вертикально, две другие - по обе стороны сектора. Боковые горелки могут устанавливаться в зависимости от требуемого узла разделки.

3.2 Оборудование для механической резки скоса кромок.
Основными процессами резки скоса кромки резанием являются фрезерование, строгание и долбление. Несколько особняком стоит метод резки абразивными кругами. Обработка проводится на различных типах оборудования - стационарных и мобильных: - стационарные станки: фрезерование, строгание, долбление, резка абразивными кругам; - мобильные (передвижные) машины: фрезерование; - переносной инструмент: фрезерование, долбление, резка абразивными кругам. Нет смысла рассматривать абсолютно все виды оборудования, поэтому остановимся на наиболее часто применяемых в промышленности.

3.2.a) Кромкострогальные станки.
Применяются для обработки только прямых деталей, но при этом строгание позволяет получить скос кромки любого вида, в том числе с двойным сломом и криволинейные. Кромкострогальные станки применяют в тех отраслях промышленности, где большинство деталей имеет прямы кромки - химическое машиностроение, котлостроение, производство вагонов. Необходимо помнить, что при высоте кромки (размер h на Рис.8) больше, чем 4 мм, строгание необходимо вести за несколько проходов.

3.2.b) Кромкофрезерные станки.
В отличие от кромкострогальных, позволяют обрабатывать криволинейные детали. Обработка скоса кромки проводится либо цельными фрезами из быстрорежущей стали, либо наборными режущими головками с режущими твердосплавными пластинами. Кромкофрезерные станки различают двух видов - с перемещением фрезерной головки и с перемещением обрабатываемой детали. Станки с перемещением обрабатываемой детали более простые по конструкции. В частности, изменение угла обрабатываемого скоса кромки обычно достигается наклоном фрезерной головки относительно станины станка.

Для обработки криволинейных деталей на станках перемещением фрезерной головки используют различные системы механического отслеживания кромки детали. Кромкофрезерные станки с ЧПУ имеют весьма ограниченное применение из-за своей высокой стоимости.

3.2.c) Кромкоскалывающие станки.
Конструктивно это те же самые кромкофрезерные станки, однако обработка ведется на большой скорости специальными фрезами из быстрорежущей стали с нечетко выраженными режущими гранями. Кромкоскалывающие станки имеют большую производительность, но поверхность полученной кромки очень грубая и нуждается в дальнейшей обработке. Чаще всего кромкоскалывающие станки используют на крупных предприятиях, обрабатывающий большой объем металла, для предварительной подготовки скоса кромки на деталях больших толщин (свыше 20 мм). В дальнейшем полученная кромка доводится до нужного качества строганием, чистовым фрезерованием или абразивной обработкой.

3.2.d) Специальные кромкофрезерные головки.
Почти не используемое специальное оснащение для портальных машин термической резки с ЧПУ. Фрезерные головки с приводом вращения и профильными режущими пластинами устанавливаются на отдельный суппорт портальной машины и работает по программе, задаваемой системой ЧПУ.

3.2.e) Передвижные кромкофрезерные машины.
По технологии обработки копируют стационарные станки, отличаясь только тем, что во время обработки рабочий должен вручную перемещать машину вдоль обрабатываемой детали. Передвижные машины незаменимы при обработке деталей большой длины (прямолинейных или криволинейных) в тех случаях, когда предприятие не имеет кромкофрезерных станков или транспортировка деталей на них нецелесообразна.

3.2.f) Переносные кромкофрезерные машинки.
Это ручной механизированный инструмент, который представляет собой стандартные углошлифовальные машинки, оснащенные специальными фрезерными головками со сменными твердосплавными режущими пластинами. Позволяют резать скосы кромок для V-образной, Y-образной и J-образной разделок (за счет сменных головок с пластинами различной формы). Очень удобны при обработке деталей сложной формы с различными отверстиями, вырезами, криволинейными гранями, но требуют от рабочих наличия определенных навыков.

3.2.g) Переносной механизированный инструмент долбежного типа.
Такой инструмент под названием ручных кромкорезов или ручных фаскорезов выпускается компанией Trumpf (Германия). Способ обработки кромок долблением сравнительно недавно вошел в российскую технологическую практику и еще не слишком широко известен. Инструмент такого типа (с электрическим или пневматическим приводом) использует в работе принцип долбежного станка: нож, совершая возвратно-поступательные движения поперек кромки детали, срезает часть металла. Перемещение кромкореза вдоль края детали осуществляется вручную. При помощи долбления удается обрабатывать за один проход скосы кромок деталей довольно большой толщины - до 40 мм. При правильном использовании кромкорезов удается получить чистый скос кромки очень высокого качества - в первую очередь необходимо следить за соблюдением скорости перемещения инструмента.
Кромкорезы долбежного типа наиболее удобны при обработке кромок деталей небольшой длины, сложных криволинейных кромок (на плоских деталях, деталях с погибью, трубах, в том числе трубах с косыми резами) при работе в монтажных условиях. К недостаткам можно отнести большую массу инструмента и возможность обработки только прямых скосов.

3.2.h) Переносной электрический инструмент для абразивной обработки
В эту группу можно включить следующие виды инструменты:
- стандартные углошлифовальные машинки для резки скоса кромки абразивными кругами,
- специальные углошлифовальные машинки для резки скоса кромки абразивными кругами,
- специальные машинки для абразивной зачистки скоса кромки после строгания или фрезерования.
Абразивная зачистка после строгания или фрезерования (абразивными шлифовальными дисками или лентами) часто применяется для деталей из нержавеющих сталей или алюминиевых сплавов, так как при сварке эти материалы весьма «чувствительны» к высокой шероховатости поверхности кромки (также зачистка может вестись и на кромкофрезерных станках при оснащении их соответствующими сменными инструментальными головками). После предварительной обработки на кромкоскалывающих станках абразивная зачистка обязательна, иногда - в несколько этапов абразивными материалами различной зернистости.

IV. Сравнение и применяемость различных методов подготовки скоса кромок сварных соединений

Все вышеперечисленные способы имеют свои достоинства и недостатки и выбор технологии разделки зависит от обрабатываемых изделий и конкретных условий производства. Важно оценивать, какая из рассмотренных технологий наиболее применима на производстве и обеспечит необходимую точность, будучи при этом максимально дешевой. Для удобства сравнения особенности рассмотренных вариантов сведены в таблицу.

Сравнение методов резки скоса кромок под сварку

БИБЛИОГРАФИЯ:
1. Акулов А.И., Алехин В.П., Ермаков С.И., Полевой Г.В., Рыбачук А.М., Чернышов Г.Г, Якушин Б.Ф. Технология и оборудование сварки плавлением и термической резки. - М., Машиностроение, 2003.
2. Акулов А.И., Бельчук Г.А., Демянцевич В.П. Технология и оборудование сварки плавлением. - М., Машиностроение, 1977.
3. Ширшов И.Г., Котиков В.Н. Плазменная резка. - Л., Машиностроение, 1987.
4. Никифоров Г.Д., Бобров Г.В., Никитин В.М., Дьяченко В.В. Технология и оборудование сварки плавлением. - М., Машиностроение, 1978.
5. Сварные конструкции: достижения и перспективы нового тысячелетия. Материалы конференции Международного института сварки 13 июля 2000 г. - М., АО «Спецэлектрод», 2000.
Также использованы фотографии и материалы компаний:
Cevisa (Испания), ESAB (Швеция), Koike (Япония), Messer C&W (Германия), Trumpf (Германия), Gerima (Швейцария), Gloor (Швейцария), Air Liquide Welding (Франция)

Каждый способ сварки плавлением имеет свою проплавляющую способность и предельную толщину свариваемого металла за один проход без разделки кромок. Например, ручной дуговой сваркой покрытыми электродами можно проплавить за один проход 5...7 мм. При сварке деталей большей толщины приходится делать разделку кромок для того, чтобы можно было проплавить сначала корневой слой и затем, заполняя остальное сечение разделки, сварить соединение по всей толщине, а также тогда, когда необходимо регулирование химического состава шва. Разделка кромок - придание кромкам, подлежащим сварке, необходимой формы удалением части металла кромок. Но разделку кромок приходится делать еще и для обеспечения качественной обратной стороны шва при односторонней сварке без подкладок на весу.

Форму разделки кромок при прямолинейном наклонном срезе кромок и их сборку под сварку характеризуют четыре основных конструктивных параметра (рис. 4.1): зазор - b , притупление - с (нескошенная часть торца кромки), угол скоса кромки -  (острый угол между плоскостью скоса кромки и плоскостью торца) и угол разделки кромок -  (угол между скошенными кромками свариваемых частей), равный  или 2. Разделка кромок обеспечивает доступ электрода и дуги вглубь соединения для полного проплавления кромок на всю их толщину. Так как форма разделки кромок определяет количество необходимого дополнительного металла для заполнения разделки, стремятся делать минимальную площадь разделки. Сварные соединения с Х-образной разделкой кромок для двусторонней сварки имеют преимущества перед соединениями с V-образной разделкой кромок для односторонней сварки, так как при одной и той же толщине свариваемого металла будет ниже в 1,6...1,7 раза объем наплавленного металла и расход сварочных материалов (электродов, электродной проволоки и флюса). Параметры разделки кромок являются важными характеристиками сварного соединения, от которых зависит качество, экономичность, прочность и работоспособность сварного изделия, и поэтому для каждого способа сварки и для каждой группы изделий (объектов) определены ГОСТами, отраслевыми стандартами и нормативными документами на выполнение сварочных работ на данном объекте.

Рис. 4.1. Конструктивные параметры разделки кромок и сборки под сварку: b - зазор; c - притупление кромки;  - угол скоса кромки;  - угол разделки кромок

Конструктивные элементы швов . Швы сварных соединений стандартизованы. Шов, размеры которого стандартом не установлены, носит название нестандартного и изображается на чертеже с указанием размеров и допусков (рис. 4.2).

Нестандартные швы обычно рассчитываются. Границы шва - сплошные толстые линии, а конструктивные элементы разделки - сплошная тонкая линия. Стандартные швы изображают на чертеже (Рис. 4.2) сплошной толстой линией (видимые) и прерывистой линией (невидимые). В разрезе стандартный шов не показывается.

Размеры и допуски стандартных швов оговариваются в соответствующих Гостах. Стандарты подразделяются: по видам сварки, по материалам, по взаимному расположению свариваемых деталей и по конструктивным особенностям деталей.

По видам сварки:

Гост 5264-80 – ручная дуговая сварка (РДС) устанавливает основные типы, конструктивные элементы и размеры сварных соединений из сталей, а также сплавов на железоникелевой и никелевой основах, выполняемых ручной дуговой сваркой покрытыми электродами толщиной от 1 до 175 мм во всех пространственных положениях. Стандарт не распространяется на сварные соединения стальных трубопроводов.

Гост 8713-79 - "Сварка под флюсом. Соединения сварные" распространяется на соединения из сталей, а также сплавов на железоникелевой и никелевой основах, выполняемых сваркой под флюсом, и устанавливает основные типы, конструктивные элементы и размеры сварных соединений.

Стандарт распространяется на автоматическую и механизированную сварку под флюсом на весу, на флюсовой, флюсомедной и остающейся подкладках, на медном ползуне и на подварочном шве стыковых, нахлесточных, угловых и тавровых соединений толщиной от 1,5 до 160 мм.

Гост 14771-79 - "Дуговая сварка в защитном газе. Соединения сварные" устанавливает основные типы, конструктивные элементы и размеры сварных соединений из стали, а также сплавов на железоникелевой и никелевой основах, выполняемых дуговой сваркой плавящимся электродом в углекислом газе и его смесях с кислородом, в инертных газах и их смесях с углекислым газом и кислородом, а также неплавящимся электродом в инертных газах с присадочным и без присадочного металл.

ГОСТ 28915-91 «Сварка лазерная импульсная. Соединения сварные точечные» устанавливает основные типы конструктивные элементы и размеры сварных соединений из стали, а также железоникелевых, никелевых и титановых сплавов толщиной от 0,1 до 1,8 мм, выполняемых импульсной лазерной сваркой твердотельными лазерами.

ГОСТ 15164-78 "Электрошлаковая сварка. Соединения сварные" устанавливает основные типы, конструктивные элементы и размеры сварных соединений из сталей (кроме коррозионно-стойких) при сварке проволочным электродом, плавящимся мундштуком и электродом, сечение которого соответствует по форме поперечному сечению сварочного пространства для толщины 30...800 мм при длине прямолинейных и кольцевых швов до 10000 мм.

Кроме этого стандарт устанавливает толщину и ширину остающейся подкладки, ширину шва и размеры рабочей поверхности устройств, формирующих шов.

По материалам: Гост 14806-80 - сварка алюминия и его сплавов;