Для сохранения озонового слоя необходимо. Проблемы сохранения озонового слоя земли

Проблема сохранения озонового слоя Земли(13). 3

1. Введение 3

2.Озон в атмосфере. Озоновый слой - ультрафиолетовый щит Земли 5

3. Источники разрушения озонового слоя 10

4. Озоновая дыра над Антарктикой 12

5. Чем грозит озоновая дыра 13

6. Проблемы и пути их решения. 16

7. Основные мероприятия по защите озонового слоя 18

Заключение. 19

Возможное потепление климата. Парниковый эффект 20

1.Введение 20

2. Парниковый эффект 21

3.Недавние изменения 27

4.Критика глобального потепления 28

Список использованной литературы 31

Проблема сохранения озонового слоя Земли(13).

  1. Введение

Современная кислородная атмосфера Земли – уникальное явление среди планет Солнечной системы, и эта её особенность связана с наличием на нашей планете жизни.

Глобальная изменчивость или глобальные изменения в последние годы превратились в основную проблему исследований в области окружающей среды главным образом благодаря тому огромному влиянию, которое она по всей вероятности будет оказывать на мировое сообщество.

Этот интерес понятен – речь идёт о будущем всей биосферы Земли, в том числе и самого человека. В настоящее время назрела необходимость принять определённые обязательные для всех решения, которые позволили бы сохранить озонный слой. Но чтобы эти решения были правильны, нужна полная информация о тех факторах, которые изменяют количество озона в атмосфере Земли, а также о свойствах озона, о том, как именно он реагирует на эти факторы.

Озоновому слою Земли посвящено довольно много публикаций: в одних утверждается, что озоновый слой исчезает быстро и необратимо и жить человечеству осталось недолго, а в других, что озоновые дыры существовали всегда, и это нормальный естественный процесс, на который человечество повлиять никак не может. Так что же происходит с атмосферным азоном?

Озон – одна из наиболее важных составляющих атмосферы Земли. С экологической точки зрения наиболее ценное его свойство – это способность поглощать опасное для живых организмов ультрафиолетовое излучение Солнца. С другой стороны, он сильнейший окислитель (попросту яд), способный отравлять ту самую флору и фауну, которую защищает, находясь в стратосфере. Отравляющее действие озона приносит пользу при очистке воды от болезнетворных организмов: озонирование воды - один из лучших способов ее очистки. Кроме того, озон обладает свойством парникового газа, влияющего на изменение климата.

С точки зрения различных функций и свойств озон можно условно разделить на «плохой» и «хороший». «Плохой» озон входящий в состав фотохимического смога, поразившего многие крупные города, находится в приземном слое тропосферы и, достигнув определенных концентраций, представляет опасность для всего живого. Однако основная часть озона сосредоточена в стратосфере, расположенной над тропосферой на высоте 8 км над полюсами, 17 км над экватором и простирающегося вверх на высоту примерно 50 км. Это – «хороший» озон: он защищает все живое от опасного ультрафиолетового излучения.

Наиболее яркое проявление антропогенного воздействия на озоновый слой Земли – это антарктическая озоновая дыра, в которой истощение озона составляет более 50%.После осознания последствий разрушения озонового слоя антропогенными источниками были сделаны важные шаги – приняты Венская конвенция (1985) и Монреальский протокол (1987), запрещающие производство озоноразрушающих веществ. По мере сокращения их производства в последнее время отмечается некоторая стабилизация в содержании озона в стратосфере и даже тенденция к его восстановлению.

Расчеты показывают, что процесс восстановления озона будет происходить в течение всего текущего столетия. Ускорение этого процесса – еще один важный шаг в решении сложной проблемы сохранения озонового слоя.

  1. Озон в атмосфере. Озоновый слой - ультрафиолетовый щит Земли

Озон содержится в атмосфере до высот 100 км, но в ничтожно малом количестве (до 0,001 %), однако без него жизнь на земле была бы совсем не такой, какой мы наблюдаем её сейчас. Молекула озона О3 образуется соединением молекулы О2 и атома О, когда они вместе встречаются еще с одной молекулой М, которой может быть любая частица, в том числе и молекула азота N2. Она необходима, чтобы поглотить энергию, которая выделяется при образовании О3. Нижняя граница слоя атмосферы, где образуется большое количество озона, находится на высоте 10–15 км, а верхняя – на высоте около 50 км. Этот слой называется озоносферой.

Максимум концентрации молекул озона соответствует высоте около 25 км, однако, даже здесь имеется не более 5–10 молекул озона на миллион молекул воздуха. Озон, образующийся выше 8–12 км, часто называют стратосферным озоном, чтобы отличить его от тропосферного озона, который образуется в результате других процессов в приземном слое атмосферы. О тропосферном озоне будет рассказано позднее в теме "Загрязняющие вещества и смоги". Количество тропосферного озона не превышает 10% от общего содержания озона в атмосфере. Общее содержание озона в вертикальном столбе атмосферы, если его привести к нормальному давлению (760 мм. рт. ст.) и температуре (0°С), и собрать в слой, то высота этого слоя составит около 3 мм.

Однако озоносфера почти полностью поглощает губительные для всего живого ультрафиолетовые лучи Солнца. Под ультрафиолетовой радиацией УФ Солнца понимается радиация в диапазоне длин волн от 0,4 до 0,01 мкм (см. рис. 1). По воздействию на живые клетки её делят на три части: УФ-А (0,4–0,315 мкм), УФ-В (0,315–0,380 мкм) и УФ-С (корче 0,28 мкм). УФ-С губителен для живого организма даже в небольших дозах, вследствие разрушения молекул белка, к счастью, УФ-С полностью поглощается озоносферой и не доходит до земной поверхности. УФ-В доходит до земли лишь в небольших дозах, более всего у земли наименее опасного УФ-А. В целом воздействие УФ на человека можно свести к следующему: 1) распаду белка; 2) канцерогенное действие; 3) ослабление иммунной системы; 4) ожог или даже рак кожи; 5) глазные (катаракта) и инфекционные заболевания 6) аллергические заболевания; 7) мутагенное действие.

Рис. 1. Спектральные диапазоны полного или частичного поглощения солнечного излучения атмосферой.

Озоновый слой охватывает всю Землю, но его толщина сильно меняется, возрастая от экватора к полюсу. Озон образуется в течение всего года в стратосфере над экваториальным поясом. Благодаря переносу его воздушными течениями он перемещается в направлении полярных широт. На планете четко выделяется тропическая область недостаточно малого содержания озона в зоне от 35° с. ш. до 35° ю. ш., где средняя приведенная толщина слоя О3 около 2,6 мм. К северу и югу от нее толщина слоя больше – 3,5 мм. Кыргызстан находится на границе комфортной и недостаточной зон содержания озона. Озон испытывает значительные вариации в течение года, причем они минимальны над тропиками и максимальны в высоких широтах.

Максимальные значения содержания озона на всех широтах наблюдается в конце зимы и весной, минимальные - осенью и начале зимы. С увеличение широты происходит сдвиг времени наступления максимума на более поздние месяцы. Так, в Алма-Ате максимум толщины слоя озона наблюдается в феврале, в Санкт-Петербурге – в марте, на о. Диксон – в мае.

3. Озоновые дыры и причины их возникновения

Озон представляет собой едкий, слегка голубоватый газ. Его молекула состоит из трех атомов кислорода. Химически озон - это молекула, состоящая из трех атомов кислорода (молекула кислорода содержит два атома). Концентрация озона в атмосфере очень мала, и небольшие изменения количества озона приводят к серьезным изменениям интенсивности ультрафиолета, достигающего земной поверхности. В отличии от обычного кислорода озон неустойчив, он легко переходит в двухатомную, устойчивую форму кислорода. Озон – гораздо более сильный окислитель, чем кислород, и это делает его способным убивать бактерии, подавлять рост и развитие растений. Впрочем, из-за его низкой в обычных условиях концентрации в приземных слоях воздуха эти его особенности практически не влияют на состояние живых систем.

Гораздо важнее его другое свойство, делающее этот газ совершенно необходимым для всей жизни на суше. Это свойство – способность озона поглощать жесткое (коротковолновое) ультрафиолетовое (УФ) излучение Солнца. Кванты жесткого УФ обладают энергией, достаточной для разрыва некоторых химических связей, поэтому его относят к ионизирующим излучениям. Как и другие излучения этого рода, рентгеновское и гамма-излучение, оно вызывает многочисленные нарушения в клетках живых организмов. Озон образуется под воздействием высокоэнергетичной солнечной радиации, стимулирующей реакцию между О 2 и свободными атомами кислорода. Под воздействием умеренной радиации он распадается, абсорбируя энергию этой радиации. Таким образом, этот цикличный процесс "съедает" опасный ультрафиолет.

Молекулы озона, как и кислорода, электрически нейтральные, т.е. не несут электрического заряда. Поэтому само по себе магнитное поле Земли не влияет на распределение озона в атмосфере. Верхний слой атмосферы – ионосфера, практически совпадает с озоновым слоем.

В полярных зонах, где силовые линии магнитного поля Земли замыкаются на ее поверхности, искажения ионосферы весьма значительны. Количество ионов, в том числе и ионизированного кислорода, в верхних слоях атмосферы полярных зон снижено. Но главная причина малого содержания озона в области полюсов – малая интенсивность солнечного облучения, падающего даже во время полярного дня под малыми углами к горизонту, а во время полярной ночи отсутствуют вовсе. Площадь полярных «дыр» в озоновом слое – надежный показатель изменений общего содержания озона в атмосфере.

Содержание озона в атмосфере колеблется вследствие многих естественных причин. Периодические колебания связаны с циклами солнечной активности; многие компоненты вулканических газов способны разрушать озон, поэтому повышение вулканической активности ведет к снижению его концентрации. Благодаря высоким, сверураганным скоростям воздушных потоков в стратосфере разрушающие озон вещества разносятся на большие площади. Переносятся не только разрушители озона, но и он сам, поэтому нарушения концентрации озона быстро разносятся на большие площади, а локальные небольшие «дыры» в озоновом щите, вызванные, например, запуском ракеты, сравнительно быстро затягиваются. Только в полярных областях воздух малоподвижен, вследствие чего исчезновение там озона не компенсируется его заносом из других широт, и полярные «озонные дыры», особенно на Южном полюсе, весьма устойчивы.

Согласно одному из них уменьшение озона связано с увеличением оксидов азота, вызванных в свою очередь солнечной активностью. Как известно, максимум солнечной активности в последнем 11-летнем цикле наблюдается в 1979 – 1983 гг. В это же время наблюдалось увеличение (на 30 – 60%) концентрации оксидов азота в мезосфере Южного полушария. В последующем отмечался перенос оксидов на более низкие уровни в стратосферу в период полярной ночи. Фотохимические реакции “азотного” цикла с участием оксидов азота, как мы знаем, приводят к разрушению озона, что обуславливает снижение его концентрации в стратосфере и образовании озоновой дыры. Наблюдавшиеся отставания по времени между максимумом солнечной активности и ореолом развития озоновой дыры в 1985-м и последующих годах объясняются следующим образом. К моменту максимума и начала спада солнечной активности происходит резкое увеличение нисходящего потока оксидов азота в стратосферу и последующее формирование озоновой дыры. В период спада солнечной активности на границе мезосферы поток оксидов азота уменьшается, но в стратосфере их концентрация максимальна, а, следовательно, содержание озона минимально. Наконец, на последней стадии, которая началась в 1986г. и к90-м годам еще не закончилась, в минимуме солнечной активности содержание оксидов азота в стратосфере уменьшается, а количество озона должно увеличиваться и состояние озонового слоя должно возвратиться к первоначальному.

Такой механизм мог реально объяснить процесс формирования озоновой дыры. В его пользу до последнего времени говорил тот факт, что в 198г. наблюдалось значительное увеличение концентрации озона по сравнению с предыдущим годом, осенью которого отмечалось максимальное разрушение озонового слоя над Антарктидой. Однако измерения 1989г. показали, что дыра вновь появилась, т.е. вместо ее исчезновения, при спаде солнечной активности, начинают отмечаться колебания величены от года к году. Помимо этого, в рамках данного механизма остаются без ответа по крайней мере, два вопроса. Первый: почему в процессе предшествующих 11-летних циклов солнечной активности не формировалась озоновая дыра? В частности, один из предыдущих циклов, максимум которого приходится на 1958 – 1960гг., обладал активностью большей, чем текущий. Однако в те годы отмечено лишь небольшое снижение концентрации озона, которое возможно связанно с последствиями ядерных испытаний. Второй вопрос: почему озоновая дыра формировалась только в Южном полушарии?

Другой предполагаемый механизм связывает образование озоновой дыры с “хлорным” циклом антропогенного происхождения. Одну из фотохимических реакций с участием хлора, я рассматривала в одном из предыдущих разделов. Механизм, связанный с реакциями хлорного цикла, предполагает поступление хлорных соединений в полярную стратосферу благодаря циркуляции атмосферы. А в атмосферу разрушающие озон соединения поступают с поверхности Земли непрерывно из миллионов аэрозольных упаковок, бытовых холодильников, рефрижераторов, в результате выбросов химических заводов и т.д. И не смотря на то. Что хозяйственная деятельность человека пока еще не привела к заметному снижению суммарного содержания озона в атмосфере, фреоны могут быть причастны к разрушению озонового слоя над Антарктидой – таково мнение большой группы ученых. Но и в этом механизме есть безответный вопрос: почему антропогенно обусловленный механизм не проявил себя в Северном полушарии, где поступление хлорных, бромистых и других соединений, разрушающих озон, идет более интенсивно?

Третий возможный механизм – так называемый динамический – пытается объяснить формирование озоновой дыры чисто циркуляционными процессами в стратосфере и мезосфере и горизонтальным перераспределением озона при общем его постоянстве. Опуская аргументацию сторонников такого механизма, отмечу лишь, что при указанной циркуляции должен происходить отток озона из полярной озоносферы и его накапливание в полосе 60 – 70 градусов южной широты. Хотя такое накапливание и наблюдалось, но ожидаемый по этой теории баланс озона в Южном полушарии отсутствовал,– суммарное содержание озона там в этот период снижалось. Так, в основании результатов измерений, проведенных в ходе полетов исследовательского самолета НАСА между Калифорнией и Чили, в сентябре – октябре 1989г. произошло значительное обеднение (до 15-30%) слоя озона за пределами озоновой дыры в южных широтах до 50 градусов.

(13) озонового слоя , загрязнение атмосферы и гидросферы и др. Безусловно...

Атмосфера Земли содержит одно- и двухатомные молекулы кислорода О и О 2 и еще один аллотроп – озон О 3 . Озон – светло-синий газ с характерным запахом – образуется в атмосфере при ультрафиолетовом облучении и грозовых разрядах. Он сконцентрирован в основном над тропосферой, в атмосфере и наблюдается от поверхности Земли до высот 80– 90 км. Воздух в стратосфере – безоблачной, сухой, холодной области – перемешивается очень медленно по вертикали и относительно быстро по горизонтали. Поэтому опасные вещества, однажды попавшие в стратосферу, остаются в ней на долгие годы и легко распространяются вокруг Земли, и тем самым загрязнение стратосферы приобретает глобальные масштабы.

Озон выполняет весьма важную роль естественного фильтра, поглощающего губительное для всего живого коротковолновое ультрафиолетовое излучение Солнца. Концентрация озона сравнительно небольшая. Если собрать озоновый слой в окружающую земной шар тонкую оболочку при нормальном атмосферном давлении, то толщина ее составит всего около 3 мм. Распределение озона в атмосфере зависит от сезона, активности Солнца, широты места, техногенного воздействия и т. п. Локальные распределения озона могут отличаться на порядок.

Разрушение озона осуществляется в результате цепной реакции, в которой одна примесная молекула может разрушить много тысяч молекул озона прежде, чем попадет в более плотные слои атмосферы и достигнет поверхности Земли вместе с осадками.

Сравнительно недавно схема образования озона в средних слоях атмосферы сводилось всего лишь к четырем химическим и фотохимическим реакциям с участием только кислородных одно- и многоатомных частиц (О, О 2 и О 3 ). К настоящему времени известно, что для описания динамического состояния стратосферы необходимо учесть не менее 150 химических реакций. Химический процесс начинается с поглощения молекулами кислорода О 3 ультрафиолетового излучения. При таком поглощении разрываются химические связи, образуется озон О 3 и атомы кислорода. При попадании моноксида азота NО в атмосферу начинается цепная реакция. Моноксид азота реагирует с озоном. Образуется диоксид азота NО 2 , который вступает в реакцию с атомами кислорода, регенерируя NО. Данные две реакции составляют по существу настоящий каталитический цикл, в котором NО и NО 2 играют роль катализаторов. В таком цикле исчезают один атом кислорода и одна молекула озона, а соединения азота – NО и NО 2 – полностью восстанавливаются (рис. 10.4). Предполагается, что рассмотренный каталитический цикл с участием оксидов азота – главный механизм разрушения озона, в результате которого возникают озоновые дыры.

Существуют два основных вида источников оксида азота в стратосфере. Первый из них – естественный – обусловливается бактериями: в природе оксиды азота образуются в основном в виде N 3 O при жизнедеятельности почвенных и морских бактерий. Такое относительно инертное соединение медленно поднимается в атмосфере, где в результате поглощения ультрафиолетового излучения образуются оксиды азота NО и NO 2 . Второй источник – различного рода газы искусственного происхождения, а также газы, образовавшиеся при ядерных взрывах.


С деятельностью человека связан еще один существенный источник загрязнения стратосферы – галогенпроизводные углерода CFCl 3 и CF 2 Cl 3 (хлорфторметаны), широко применяемые в качестве хладагентов и аэрозольных наполнителей. Данные соединения химически инертны, и какие-либо вредные воздействия их на живые организмы пока не обнаружены. Однако вследствие той же инертности они легко поднимаются вверх, достигая стратосферы, где возможен фотолиз под действием ультрафиолетового излучения. Хлорсодержащие продукты фотолиза Сl и СlО могут породить свой каталитический цикл, разрушающий озон подобно оксидам азота (рис. 10.5).

Предполагается, что данный каталитический цикл включает не две как это считалось раньше, а около 40 реакций с участием Сl, СlО, НСl, НОСl, HClNO 2 , и многих других соединений хлора. Большинство подобного рода реакций никогда ранее не изучалось в лаборатории. Только в последние десятилетия благодаря применению современных экспериментальных методов и технических средств появилась реальная возможность получать в лабораторных условиях многие реакционноспособные химические соединения и определять скорость их взаимодействия с многочисленными компонентами атмосферы.

Современные методы исследований аналитической химии, разработанные для обнаружения чрезвычайно малых количеств реакционноспособных молекул в лабораторных условиях, применяются для определения в естественной стратосфере таких веществ как О, ОН, С1 и С1О, концентрация которых составляет около триллионных долей. В то же время в результате исследования многих фотохимических и химических процессов, а также измерений концентрации многих примесей в стратосфере пока не обнаружены два вида соединений хлора: НОСl и ClONO 2 принимающих участие в каталитическом цикле разрушения озона хлорфторметаном.

Ученые-естествоиспытатели своевременно подготовили необходимую и научно обоснованную базу для законодательных актов, ограничивающих применение хлорфторметанов. Для их замены в холодильных камерах, кондиционерах воздуха и т. п. химическая промышленность синтезирует вещества, которые легко разрушаются и не наносят вреда окружающей среде. Последовательное рациональное решение проблемы сохранения озонового слоя – один из характерных примеров научного подхода в анализе реального состояния атмосферы и поиске путей предотвращения потенциальной угрозы окружающей среде без введения необдуманных запретительных мер.

Специально к Международному дню охраны озонового слоя

Фото italianestro/Shutterstock.com

Тонкий озоновый слой, который находится в верхних слоях атмосферы, является определяющим фактором существования жизни на нашей планете. Его функция крайне важна - задерживать ультрафиолетовое излучение, исходящее от Солнца. Без этого защитного слоя уровень радиации был бы настолько высоким, что ни один живой организм не смог бы выжить.

Планета в опасности

Ни для кого не станет новостью, что необдуманная деятельность человека привела к значительному истощению озонового слоя. Впервые об этой проблеме заговорили в 80-х годах прошлого века, а уже сегодня мы столкнулись с ее тяжелыми последствиями. Именно с ослаблением защитного слоя врачи связывают увеличение заболеваемости раком кожи и катарактой. Также большие дозы ультрафиолета не лучшим образом влияют на наш иммунитет и другие системы организма.

Мы не будем продолжать пугать вас глобальным изменением климата, которое, кстати, тоже является следствием разрушения озонового слоя, лучше поговорим о том, что каждый из нас может сделать для спасения нашей планеты.

5 способов сохранить озоновый слой

Существует много простых способов защитить озоновый слой. Вот некоторые из них.

  • Старайтесь реже пользоваться аэрозолями или же покупайте спреи нового поколения, на которых написано «Не разрушает озоновый слой» (или Ozone friendly). Эта надпись гарантирует, что продукт не содержит хлорфторуглероды, разрушающие озоновый слой над нашей планетой.
  • Хотя бы на один день откажитесь от использования личного авто , а для поездок по городу воспользуйтесь общественным транспортом или велосипедом.
  • Задайтесь целью раз в год высаживать хотя бы одно дерево. Деревья, цветы и прочая растительность не только украшают нашу жизнь, но и выполняют множество важных функций: вырабатывают необходимый для жизни кислород, поглощают пыль и вредные выбросы, регулируют температурный режим и т. д.
  • При покупке холодильника, кондиционера и других бытовых приборов выбирайте энергосберегающие модели. Более того, вся перечисленная техника должны быть полностью исправной. В противном случае эти полезные в быту приборы могут служить причиной утечки хладагента в атмосферу.
  • Обратите внимание, какой огнетушитель висит у вас на работе или дома. По возможности откажитесь от использования огнетушителей, в заряд которых входят галогенированные углеводороды. Безопасная для природы альтернатива: углекислотные или воздушно-пенные огнетушители.

Что выделаете для сохранения озонового слоя на Земле? Расскажите нам в комментариях!

Читайте другие интересные статьи

Многие страны мира разрабатывают и осуществляют мероприятия по выполнению Венских конвенций об охране озонового слоя и Монреальского протокола по веществам, разрушающим озоновый слой.

В чем заключается конкретность мер по сохранению озонового слоя над Землей?

Согласно международным соглашениям промышленно развитые страны полностью должны прекратить производство фреонов и тетрахлорида углерода, которые также разрушают озон.

Вторым этапом должен стать запрет на производство метилбромидов и гидрофреонов. Уровень производства первых в промышленно развитых странах с 1996 г. заморожен, гидрофреоны полностью снимаются с производства к 2030 г. Однако развивающиеся страны до сих пор не взяли на себя обязательств по контролю над этими химическими веществами.

В последнее время появилось несколько проектов по восстановлению озонового слоя. Так, восстановить озоновый слой над Антарктидой при помощи запуска специальных воздушных шаров с установками для производства озона надеется английская группа защитников окружающей среды, которая называется «Помогите озону». Один из авторов этого проекта заявил, что озонаторы, работающие от солнечных батарей, будут установлены на сотнях шаров, наполненных водородом или гелием.

Несколько лет назад была разработана технология замены фреона специально подготовленным пропаном. Ныне промышленность уже на треть сократила выпуск аэрозолей с использованием фреонов. В странах ЕЭС намечено полное прекращение использования фреонов на заводах бытовой химии и т. д.

Разрушение озонового слоя связывают с глобальным изменением климата на нашей планете. Последствия этого явления, названного «парниковым эффектом», крайне сложно прогнозировать. Согласно пессимистическим прогнозам ученых ожидаются изменения количества осадков, перераспределение их между зимой и летом; говорят о перспективе превращения плодородных регионов в засушливые пустыни, повышении уровня Мирового океана в результате таяния полярных льдов.

Рост губительного воздействия ультрафиолетового излучения вызывает деградацию экосистем и генетические изменения у флоры и фауны, снижает урожайность сельскохозяйственных культур и продуктивность Мирового океана.

К ультрафиолетовым лучам очень чувствительны хвойные деревья и злаки, овощи, бахчевые культуры, сахарный тростник и бобовые. Данные экспериментов свидетельствуют о том, что рост некоторых растений сдерживается существующим уровнем радиации.

Экологический паспорт предприятия

Экологический паспорт предприятия -- это комплексный документ, содержащий характеристику взаимоотношений предприятия с окружающей средой.

Экологический паспорт предприятия состоит из двух частей. Первая часть содержит общие сведения о предприятии, используемом сырье, описание технологических схем выработки основных видов продукции, схем очистки сточных вод и выбросов в атмосферу, их характеристики после очистки, данные о твердых и других отходах, а также сведения о наличии в мире технологий, обеспечивающих достижение наилучших удельных показателей по охране природы. Вторая часть паспорта содержит перечень планируемых мероприятий, направленных на снижение нагрузки на окружающую среду, с указанием сроков, объемов затрат, удельных и общих объемов выбросов вредных веществ до и после осуществления каждого мероприятия.

В экологическом паспорте предприятия находят отражение три группы показателей:

  • § показатели влияния предприятия на состояние окружающей среды;
  • § показатели организационно-технического уровня природоохранной деятельности предприятия;
  • § общие и частные показатели анализа затрат на природоохранную деятельность.

К первой группе относятся следующие показатели:

  • § экологичность выпускаемой продукции;
  • § влияние на водные ресурсы;
  • § влияние на атмосферный воздух;
  • § влияние на материальные ресурсы и отходы производства;
  • § влияние на земельные ресурсы.

Ко второй группе показателей относятся такие, как:

  • § оснащенность источников загрязнения очистными устройствами;
  • § пропускная способность имеющихся очистных сооружений;
  • § прогрессивность применяемого очистного оборудования;
  • § возможность контроля за функционированием очистного оборудования;
  • § рациональность существующей организационной структуры природоохранной деятельности предприятия;
  • § удельные показатели организационно-технического уровня природоохранной деятельности предприятия.

составляющих атмосферы Земли. С экологической точки зрения наиболее ценное его свойство - это способность поглощать опасное для живых организмов ультрафиолетовое излучение Солнца. С другой стороны, он сильнейший окислитель (попросту яд), способный отравлять ту самую флору и фауну, которую защищает, находясь в стратосфере. Отравляющее действие озона приносит пользу при очистке воды от болезнетворных организмов: озонирование воды - один из лучших способов ее очистки. Кроме того, озон обладает свойством

парникового газа, влияющего на изменение климата.

С точки зрения различных функций и свойств один и тот же по химическому составу озон можно условно разделить на «плохой» и «хороший». «Плохой» озон, входящий в состав фотохимического смога, поразившего многие крупные города, находится в приземном слое тропосферы и, достигнув определенных концентраций, представляет опасность для всего живого. Однако основная часть озона сосредоточена в стратосфере, расположенной над тропосферой на высоте 8 км над полюсами, 17 км над экватором и простирающийся вверх на высоту примерно 50 км. Это - «хороший» озон: он защищает все живое от опасного ультрафиолетового излучения.

Проблемы разрушения озонового слоя и образования городского смо
га часто обсуждаются в средствах массовой информации, и это дает по
вод полагать, что в атмосфере Земли содержится слишком много озона.
Действительно, его может оказаться слишком много в тропосфере, где он
наносит вред флоре и фауне, и слишком мало там, где он выполняет за
щитную функцию. В целом же общее количество озона в атмосфере срав
нительно мало: если его сжать до плотности воздуха у поверхности Зем
ли, то получится слой толщиной примерно 3,5 мм. Концентрация озона в
атмосфере зависит от географической широты, высоты, времени года, ак
тивности Солнца, техногенного воздействия и т.п. Естественные ее коле
бания могут достигать 25%. Распределение озона по высоте представлено
на рис. 10.4, где концентрация дана в условных единицах, соответствую
щих давлению в миллипаскалях (мПа). В стратосфере сосредоточено 90%
всего озона, 10% - в тропосфере, частично в смоге. Больше всего озона
находится на высоте 20-25 км, где его концентрация превышает 30 мПа,
27-3290 417


что соответствует примерно одной молекуле озона на 100 000 молекул воздуха.

В процессе развития жизни на Земле совершенно случайно оказалось, что озон, образовавшийся в древней земной атмосфере, и клетки живых организмов поглощают биологически опасное коротковолновое излучение Солнца в одном и том же диапазоне длин волн 230-290 нм. Опасное воздействие ультрафиолетового излучения на живую клетку заключается в том, что оно повреждает молекулы ДНК, поглощающие его сильнее, чем молекулы белков клетки. С формированием озонового слоя появилась, может быть, единственная возможность во Вселенной для развития большого разнообразия живых форм, включая человека. Поэтому весьма важно представлять механизмы образования и разрушения озона.

Основной источник озона в атмосфере - молекулярный кислород О 2 , который под действием ультрафиолетового излучения распадается на атомы. Атомы кислорода О вступают в связь с молекулами О 2 , образуя молекулы озона О 3 . Атомарный кислород образуется на высоте выше 20 км при расщеплении молекулы кислорода ультрафиолетовым излучением с длиной волны не более 240 нм. В нижние слои атмосферы такое излучение не проникает, и здесь атомы кислорода образуются в основном при фотодиссоциации двуокиси азота под действием мягкого ультрафиолетового излучения с длиной волны более 300 нм (рис. 10.5).

Поскольку связь атома О с молекулой О 2 в озоне слабая, достаточно видимого света, чтобы молекула озона распалась на исходные составляющие. Если бы после образования озона можно было изолировать солнечное излучение, то озон сохранялся бы в атмосфере довольно долго. Так 418


оно в действительности и происходит: накопленный за день в стратосфере озон за ночь не распадается.

Ускорению естественного распада озона способствует его взаимодействие с частицами, содержащими Cl, Br, NO, ОН, среди которых наиболее опасны хлор и бром и особенно хлор, входящий в состав различных видов фреонов. При взаимодействии атомов хлора с озоном образуется оксид хлора и кислород (рис. 10.6). Несмотря на то что скорость появления атомов хлора из фреонов в стратосфере в миллионы раз меньше скорости образования молекул озона при солнечном излучении, один атом хлора может разрушить сотни тысяч молекул озона. Происходит цепная реакция, включающая сотни тысяч звеньев. Этот механизм разрушения озона имеет антропогенный характер: фреоны стали производиться человеком во второй половине XX в. и широко использоваться в качестве хладагентов в холодильниках, пенообразующих агентов в огнетушителях, аэрозольных наполнителей, при химической очистке одежды, при производстве пено-пластов и т.п. Молекулы фреонов довольно устойчивы, плохо растворяются в воде и легко проходят тропосферу, достигая стратосферы, где сконцентрирован озон.

Наиболее яркое проявление антропогенного воздействия на озоно
вый слой Земли - это антарктическая озоновая дыра, в которой истоще
ние озона составляет более 50%. После осознания последствий разруше
ния озонового слоя антропогенными источниками были сделаны важные
шаги - приняты Венская конвенция (1985) и Монреальский протокол
(1987), запрещающие производство озоноразрушающих веществ. По
мере сокращения их производства в последнее время отмечается некото
рая стабилизация в содержании озона в стратосфере и даже тенденция к
его восстановлению. Расчеты показывают, что процесс восстановления
419


озона будет происходить в течение всего текущего столетия. Ускорение этого процесса - еще один важный шаг в решении сложной проблемы сохранения озонового слоя.

10.6. ВОДНЫЕ РЕСУРСЫ И ИХ СОХРАНЕНИЕ

Необходимые для жизнедеятельности всего живого водные ресурсы - это соленая вода океанов и морей, пресная вода озер, рек и подземных источников. Гигантский объем воды сосредоточен в ледниках - около 30 млн. м 3 . Существенная доля водяных паров образуется при естественном испарении поверхностных вод.

Наша страна, как никакая другая, богата водными ресурсами. Но, к сожалению, многие озера заболачиваются, реки мелеют, а иногда совсем исчезают. Редко где можно встретить на озере либо реке прекрасную снежно-белую кувшинку - индикатор чистоты воды. Многие реки несут непомерную нагрузку. Можно было бы говорить обо всех реках, но остановимся на одной из них - Волге. Проблемы Волги - это проблемы не только всех рек и всей России, но и всей планеты в целом.

Сравнительно недавно, в середине XX в., за годы «великих строек» Волга, крупнейшая река Европы, превратилась в цепь каналов, шлюзов и водохранилищ. Теперь многие понимают, что такое превращение оборачивается серьезными бедствиями.

По данным Института литосферы РАН, большая часть волжского бассейна находится в критическом состоянии. Ежегодно в Волгу поступает более 300 млн. т минеральных веществ, 64 тыс. т фенола, более 100 тыс. т соединений железа, более 6 млн. т сульфата, свыше 10 млн. т хлоридов и т.д. В бассейн Волги в 1990 г. было сброшено 23,3 км 3 сточных вод. Из них совершенно неочищенных - 1,9, мало очищенных - 9,6, так называемых нормативно очищенных, а на самом деле тоже недостаточно очищенных - 1,6 км 3 . Основная масса загрязненных вод, как ни странно, поступает через сети коммунального хозяйства, а на долю промышленных отходов приходится меньше половины. Сокращение объема пресноводного стока с завершением строительства Нижнекамского и Куйбышевского водохранилищ и загрязнение воды привели к тому, что за последние 35 лет годовой лов рыбы в Волго-Каспийском регионе снизился в восемь раз. Судака стало меньше в 24, леща в 4,5, сельди - в 16 раз. Рыба гибнет в основном из-за того, что количество фенола, ионов меди, цинка, нефтепродуктов и пестицидов в волжской воде в последние годы превышает допустимые нормы в десятки и сотни раз. А с конца 70-х годов XX в. резко повысилось содержание азота, фосфора и органических веществ.

Очевидно, если вода в Волге будет чистой, то и рыба в ней не переведется. Многие ли знают, что для рыб вода должна быть чище, чем питье-420


вая? Воду, не пригодную для рыбы, люди в соответствии с установленными нормами пить могут. Мы должны стремиться к тому, чтобы на питьевую воду были установлены те же нормы, что и для рыб.

Каков же материальный ущерб, нанесенный Волге строительством целого комплекса ГЭС? Ежегодные потери из-за недополучения продукции при затоплении более 1 млн. га сельскохозяйственных земель оцениваются - в 16 млрд. долл. и из-за потери рыбных запасов - в 4-6 млрд. долл. Если учесть эти потери, то по себестоимости электроэнергии действующие ГЭС станут невыгодными по сравнению, например, даже с ТЭЦ. Но остановить их работу, одновременно и сразу спустить воду невозможно - энергия нужна всем. Значит, надо искать способы реконструировать ГЭС таким образом, чтобы они наносили минимальный ущерб природе.

Загрязняются и подвергаются воздействию не только воды рек, но и грунтовые воды прежде всего различными видами отходов. Применяемые в течение длительного времени способы захоронения бытовых и промышленных отходов основывались на том, что миграция отходов маловероятна и что со временем содержащиеся в них соединения окисляются, гидролизуются или перерабатываются бактериями в безвредные продукты. Однако результаты исследований показали, что некоторые виды отходов слабо разлагаются и способны мигрировать, а часть их перерабатывается бактериями не в безвредные, а в токсичные вещества. Загрязняющие вещества от различных источников могут распространяться в


поверхностных слоях земной коры на большие расстояния от источников загрязнения и проникать в водоносные пласты (рис. 10.7).

Вынужденное захоронение всех видов отходов в грунте требует предварительных и сопутствующих физических, химических и биологических исследований, результаты которых позволят представить реальную картину миграции составляющих отходы соединений, а также процесс их разложения.

За последние десятилетия резко возрос объем антропогенных, в том числе и пластмассовых отходов, засоряющих не только огромные площади суши, но и моря, и океаны. Пластмассы разрушаются очень медленно - некоторые из них в течение нескольких десятков лет. Но все же усилиями химиков выход найден-синтезированы пластики с особой структурой и свойствами, отходы от которых наносят минимальный ущерб окружающей среде. В такие пластики внедряются светочувствительные молекулярные группы, способные поглощать солнечное излучение, приводящее к расщеплению полимера.

Существует несколько способов сохранения водных ресурсов:

Оптимальная комбинация химической и биологической очистки
сточных вод;

Применение дополнительных средств очистки сточных вод, со
держащих особо стойкие вещества;

Внедрение озонирования воды для ее обеззараживания;

Окисление загрязняющих веществ при высокой температуре и вы
соком давлении;

Высокотемпературное сжигание отходов и обработка их адсор
бентами и ионообменными смолами;

Циклическое применение воды при теплоотводе от различных ме
ханизмов и агрегатов;

Возвращение в производственный цикл ценных веществ, напри
мер металлов, вызывающих загрязнение почвы и воды;

Создание быстроразлагающихся заменителей пестицидов, широко
применяемых как средство борьбы с болезнями и вредителями растений.

Успешное решение проблемы сохранения окружающей среды, в том числе водных ресурсов, зависит не только от ученых, специально занимающихся данной проблемой и предлагающих эффективные методы очистки воды, но и от всех людей, бережно относящихся к природе, в том числе и к водным ресурсам.