Что надо чтоб собрать металлоискатель своими руками. Как сделать металлоискатель: подробное описание сборки

По своей популярности металлопоиск сопоставим с рыбалкой или охотой, не уступая им в азарте с определенной долей меркантильности. Повышение технической культуры населения и широкий ассортимент рынка деталей электротехнического предназначения способствуют росту числа желающих изготовить собственный металлоискатель своими руками, чтобы попробовать себя в роли кладоискателя. На рис. ниже показан энтузиаст металлопоиска, использующий самодельный металлоискатель для обнаружения металлических изделий на морском берегу.

Принцип действия металлоискателя

Металлоискатель (далее по тексту МИ), называемый также металлодетектором, представляет собой электронный прибор, формирующий направленное электромагнитное поле (первичный сигнал) и улавливающий его изменения при контакте поля с металлическими предметами. В процессе распространения электромагнитных волн в неоднородной физической среде они взаимодействуют с металлами, создавая на их поверхности вихревые токи, генерирующие собственные электромагнитные поля. Приемная аппаратура МИ фиксирует эти поля (вторичный сигнал) и информирует поисковика об обнаруженной находке звуковым или визуальным способом.

Как работает металлодетектор

Техническая реализация принципа действия МИ основывается на применении двух базовых функциональных элементов модульного типа:

  • поисковых катушек для генерации первичного электромагнитного поля направленного характера и приема переотраженных вторичных радиосигналов;
  • блоков управления для обработки информации от поисковых катушек и выдачи оператору результата обработки.

В зависимости от предназначения МИ, поисковые катушки работают в следующих частотных диапазонах:

  • низкочастотном диапазоне в пределах 2,5-6,6 кГц – для выявления золота, серебра, меди и их сплавов на глубине до 4 метров;
  • в среднечастотном диапазоне – для поиска металлов любого типа;
  • в высокочастотном диапазоне – для поиска алюминия, никеля и обнаружения мелких мишеней на малой глубине.

Параметры магнитного поля, наведенного на поверхности металлической мишени, изменяются следующим образом:

  • амплитуда сигнала уменьшается по мере удаления от передатчика;
  • фаза наведенного поля определяется удельной электропроводностью металла.

По разнице амплитуды аппаратура МИ вычисляет расстояние до цели, по сдвигу фазы определяется тип металла.

На рис. ниже показана условная схема анализа информации МИ.

Металлоискатель – детектор или сканер

По своей сути МИ являются детекторными устройствами (от лат. detector – обнаружитель), указывающими на изменение параметров первичного направленного радиосигнала. Качество металлодетекции напрямую зависит от уровня сложности аппаратуры металлодетектора, обрабатывающей вторичный сигнал. На начальном этапе появления МИ оператора вполне устраивал писк в наушниках, возникающий при обнаружении металлической мишени. Развитие элементной базы для микроэлектроники существенно расширило возможности ручной металлодетекции. Профессиональные ручные металлодетекторы способны решать следующие задачи:

  • проведение идентификации «находки» по типу металла;
  • определение глубины ее нахождения;
  • оценка размеров и конфигурации обнаруженного предмета.

Используя новейшие программные разработки, ведущие производители запустили продажи МИ с возможностями построения изображения обнаруженной цели. Например, немецкая компания ОКМ разработала глубинный 3D-сканер (от англ. scan – рассматривать) модели ЕХР 6000, выводящий на экран конфигурацию металлического предмета.

На рис. ниже показан монитор МИ модели ЕХР 6000 с выведенным на экран изображением мишени.

Разновидности МИ по назначению

В соответствии с целевым предназначением, МИ подразделяют на следующие типы:

  1. Грунтовые модели, предназначенные для изысканий под землей в верхних слоях почвы. Приборы этой категории наиболее распространены среди поисков металлов и кладоискателей, способных собрать металлоискатель своими руками в домашних условиях. Простейшая самоделка обладает низкой точностью и не всегда различает металлы разного вида. Профессиональные приборы могут выявить небольшие золотые крупинки, проигнорировав прочие металлы.
  2. Глубинные модели, рассчитанные на обнаружение целей на глубине до 6 метров. Однако «увидеть» они могут только крупные предметы площадью свыше 400 кв. см. Глубинные приборы востребованы инженерными службами в качестве трассоискателей, геологами – как специализированные георадары для поисков самородного золота и т.п.
  3. Подводные устройства металлопоиска, работающие под водой. К ним предъявляются повышенные требования к герметичности поисковой системы. Условия работы подводного МИ в морской и пресной воде значительно различаются. У подводных детекторов используется только звуковая индикация.

Обратите внимание! Подводные МИ можно применять на поверхности в режиме обычного грунтового металлоискателя. Поисковикам необходимо только подогнать длину штанги и положение упора, чтобы было удобнее пользоваться прибором.

  1. Специальные металлодетекторы:
  • охранные устройства для обнаружения металлоизделий в багаже, в одежде либо на теле человека при досмотре;
  • промышленные металлодетекторы в составе конвейерных линий, сигнализирующие о наличии металлов в продукции;
  • армейские приборы, обобщенно называемые миноискателями;
  • детекторы, настроенные исключительно на золотые предметы.

На рис. ниже показан ручной досмотровый металлодетектор.

Мотивация выбора конструкции самодельного металлодетектора

Задолго до того, как собрать металлоискатель в домашних условиях, умельцу необходимо сопоставить многочисленные факторы, влияющие на работу МИ, и выбрать оптимальный вариант конструкции в полном соответствии своим запросам. При изготовлении металлодетектора своими руками учитываются следующие технико-эксплуатационные показатели:

  • общие параметры поискового прибора, определяющие его функциональные возможности;
  • рабочие частоты, в диапазоне которых предполагается работать;
  • метод поиска, определяющий схемотехническое построение прибора с заданием способа фиксации изменения реакции МИ при приближении его к металлическому объекту.

Общие параметры МИ

Для самодельной поисковой аппаратуры выделяют следующие параметры:

  1. Проникающую способность, характеризующую максимальную глубину проникновения электромагнитного поля, глубже которой прибор уже не в состоянии выявить металлический объект.
  2. Чувствительность, указывающую способность обнаруживать мелкие предметы.
  3. Разрешающую способность, чаще называемую дискриминацией МИ, дающую информацию о конкретных свойствах объекта. Для металлодетектора необходима полноценная реализация трех составляющих дискриминации:
  • геометрической – для суждения о размерах и конфигурации найденной мишени;
  • пространственной – для информации о глубине залегания мишени и месте расположения в поисковой зоне;
  • по качеству – для предположений о виде материала объекта и его вероятных характеристиках.
  1. Размеры зоны поиска, в пределах которой удается обнаружить металл.
  2. Избирательность – повышенная реакция на находки заданного типа (золото, цветные металлы, военные артефакты и т.п.).
  3. Помехоустойчивость – отсутствие реакции на электромагнитные поля посторонних источников.
  4. Энергопотребление, определяющее, на сколько времени активной работы хватит мобильного источника питания прибора.

На рис. ниже в ироничной форме показан процесс металлодетекции (металлопоиска) с применением самодельного МИ:

  • поз. «А» – отсутствие металлических мишеней;
  • поз. «В» – обнаружены металлические предметы, представляющие определенную ценность (ради чего и затевался металлопоиск).

Красным цветом выделена зона поиска металлодетектора.

Рабочие частоты самодельного МИ

Схема металлоискателя и ее сборка привязывают все параметры самодельного металлодетектора к диапазону частот, в котором оператор предполагает работать. Практика любительского металлопоиска показала ограниченную эффективность низкочастотных (vlf) и высокочастотных (hf) металлодетекторов, требующих компьютерной обработки сигналов, потребляющих много энергии и плохо работающих на минерализованных влажных грунтах. Большинство поисковиков, заинтересованных в том, как сделать металлоискатель многофункциональным к выявлению и распознаванию цветмета, чермета, при минимальной восприимчивости к особенностям грунта, ориентируются на низкочастотный и среднечастотный диапазоны в пределах от 30 кГц до 3 МГц. Работа в этом частотном диапазоне позволяет использование простого металлоискателя для обнаружения мишеней любого типа металлов.

Метод поиска

Методик нахождения металлических предметов при помощи направленного электромагнитного поля насчитывается более десятка, включая суперсовременную цифровую обработку на компьютере вторичного сигнала при профессиональном использовании МИ. При сборке самодельных металлодетекторов для металлопоиска на любительском уровне умельцы ориентируются на методики, позволяющие максимально упростить схемотехническое построение детектора и удешевить его комплектацию. Наиболее популярными при изготовлении самоделок являются следующие методы обнаружения металлов:

  • параметрический способ, для реализации которого приемник не нужен;
  • приемо-передающий способ – с использованием передатчика и приемника;
  • способ с накоплением фазы – «до щелчка»;
  • способ на биениях – «по писку».

Параметрический способ

Металлоискатели параметрического типа оснащены только одной катушкой, которая одновременно и передающая, и принимающая. При обнаружении металлической цели изменяются параметры генерирующей катушки: индуктивность, частота и амплитуда вырабатываемых колебаний, что фиксируется аппаратурой МИ. Основной проблемой при эксплуатации детектора без приемника считается выделение сравнительно слабого наведенного сигнала на фоне мощного первичного электромагнитного поля.

Приемо-передающий способ

В конструкции моделей, работающих по способу «прием-передача», предусмотрены две катушки:

  • передающая – для генерации электромагнитного поля;
  • приемная – для регистрации переизлученного от металлической мишени сигнала.

Важно! При сборке приемо-передающего МИ катушки необходимо располагать таким образом, чтобы минимизировать индуктивную связь между ними. Если оси обеих катушек будут взаимно перпендикулярны, сигнал передатчика не попадет напрямую в приемное устройство и прослушиваться не будет.

Металлодетекторы с накоплением фазы (до щелчка)

В работе фазочувствительных приборов используется процесс задерживания импульсов при переизлучении, что приводит к увеличению сдвига фаз. При достижении конкретного значения срабатывает дискриминатор, в наушниках раздается щелчок. При приближении к металлическому объекту щелчки становятся все чаще, сливаясь в звук определенной тональности. При соответствующей настойке звука непосредственно над объектом происходит срыв синхронизации, звук пропадает из-за перехода частоты движения щелчков в ультразвуковой диапазон.

Металлодетекторы на биениях (метод «по писку»)

Если делать металлодетектор на биениях, то в самодельной конструкции необходимо задействовать два генератора электромагнитного поля:

  • опорный генератор, частота которого стабилизирована и является эталонным частотным параметром;
  • рабочий (поисковый) генератор, частота которого зависит от наличия металла в поисковой зоне.

До начала поисковых работ поисковый генератор настраивается на нулевые биения (совпадение частот). При настройке добиваются невысокого звукового тона (писка), чтобы было удобно искать. По изменению тона судят о свойствах обнаруженного объекта и его расположении.

На рис. ниже показан самодельный МИ, изготовленный из подручных материалов.

Схемы самодельных МИ

Металлопоисковая аппаратура заводского изготовления представлена на рынке достаточно дорогими электронными системами профессионального уровня, поэтому энтузиасты постоянно обмениваются информацией, как сделать самодельный металлоискатель у себя дома с минимальными финансовыми затратами. Пошаговая инструкция по сборке и отладке устройства позволяет создать вполне работоспособный металлодетектор из доступных радиодеталей. Металлоискатели, в том числе и миноискатель своими руками, схема которого идентична с разработками для типовых МИ, выполняются на транзисторах и микросхемах. В комплектацию схем для самоделок входят также:

  • конденсаторы различных типов: керамические, пленочные, электролитические;
  • резисторы;
  • резонаторы;
  • контроллеры.

Дополнительная информация. Довольно часто в схемах любительской аппаратуры для металлопоиска используется микросхема NE 555, представляющая собой универсальный таймер, генерирующий одиночные и повторяющиеся импульсы стабильных временных характеристик.

Достойным конкурентом металлодетектору на микросхемах является металлоискатель на транзисторах, в котором генерирование сигналов происходит с использованием транзисторов КТ-361 и КТ-315 или аналогичных радиодеталей, производимых еще с советских времен.

Изготовление своими руками составных частей МИ

При конструировании самодельного металлодетектора мастера ориентируются на создание малогабаритного, конструктивно сбалансированного, сравнительно легкого изделия. Мобильное исполнение и продуманная эргономика должны свести к минимуму утомляемость оператора при многочасовых непрерывных поисковых работах, а качественная сборка самодельной конструкции обеспечит хорошую повторяемость результатов и высокие эксплуатационные характеристики.

МИ кустарного производства состоят из следующих составных частей:

  • блока управления;
  • рамки с поисковой катушкой;
  • штанги-держателя, на которой крепятся поисковая катушка и блок управления.

Блок управления

Для сборки блока управления необходимо подобрать пластиковый корпус коробчатого типа. В корпусе должны компактно разместиться:

  • печатная плата с электронной начинкой, собранной в соответствии со схемой;
  • элементы питания;
  • устройства для звукового и визуального оповещения о находке.

Основным элементом блока управления является печатная плата.

Изготовление своими руками печатной платы МИ

Печатная плата используется для компактного размещения радиодеталей, входящих в состав схемы МИ. Далее обобщенное описание этапов самостоятельного изготовления печатной платы с подробным изложением выполняемых операций:

  1. Выбирается схема металлодетектора. В соответствии со схемой на бумаге прорисовывается от руки либо распечатывается на принтере эскиз платы.
  2. Вырезается кусок листового текстолита под размеры платы.
  3. Любым доступным способом рисунок переносится на текстолитовую заготовку.
  4. На поверхности заготовки делается разметка мест креплений радиодеталей. Сверлятся отверстия диаметром 1,0-1,5 мм.
  5. Перманентным маркером или кисточкой с лаком прорисовываются дорожки в соответствии с бумажным шаблоном.
  6. Плата протравливается хлорным железом или медным купоросом.
  7. После травления плата протирается и зачищается наждачной бумагой.
  8. Проводится операция лужения оловом.

На рис. ниже показана печатная плата металлоискателя после лужения.

Рамка с катушкой

Поисковая рамка металлоискателя представляет собой плоский жесткий корпус с закрепленной на нем поисковой катушкой, предназначена для выполнения следующих задач:

  • жесткой фиксации поисковой катушки относительно штанги-держателя;
  • обеспечения постоянства геометрических размеров излучающей и приемной петель поисковой катушки;
  • предохранения проводов катушек от повреждений при передвижении оператора по пересеченной местности.

Корпус рамки МИ круглой или прямоугольной формы выполняется из пластиковых трубок без применения металлических элементов. Среди умельцев популярны трубки ПВХ диаметром условного прохода ½ дюйма (15 мм). Небольшие рамки делаются неразборными в виде кольца или квадрата. При изготовлении корпуса прямоугольной формы большого размера уместно использовать фитинги, чтобы не деформировать трубки на изгибах. Размер и форма корпуса должны соответствовать размерам и конфигурации катушки с учетом особенностей размещения в ней передающего и приемного контуров.

Наиболее ответственным поисковым элементом МИ, определяющим его эксплуатационные характеристики, является поисковая катушка.

Катушки МИ

Функциональные свойства МИ определяются качеством изготовления поисковой катушки. Параметры катушки и общая схема металлодетектора нуждаются во взаимной подгонке, пока не будет достигнут оптимальный результат. На показатели работы катушки влияют различные факторы, из которых определяющими являются следующие:

  • размеры катушки;
  • конструктивное исполнение кольца катушки;
  • величина индуктивности катушки;
  • степень помехозащищенности;
  • способ намотки провода корзиночной катушки;
  • способ закрепления катушки.
Размеры катушки

Практика показала, что эффективность работы катушки напрямую зависит от ее размеров. Катушки больших размеров способны глубже просветить грунт и охватить более широкую зону поиска, чем их аналоги меньших диаметров. Принята следующая градация размеров поисковых катушек:

  • диаметр 20-90 мм оптимален для поиска чермета (арматура, профили);
  • диаметр 130-150 мм удобен для поиска так называемого «пляжного золота»;
  • диаметр 200-600 мм ориентирован на габаритные металлические объекты.
Конструктивное исполнение катушки

Классической конструкцией поисковой катушки является монопетля (одинарная петля), выполненная в виде одинарного плоского кольца из витков медного провода. Ширина и толщина кольца подбираются в 15-20 раз меньше, чем усредненный диаметр кольца. МИ с монопетлей рекомендуются для начинающих, чтобы приобрести первоначальный поисковый опыт.

Более «продвинутой» конструкцией, по сравнению с монопетлей, является ДД-катушка, представляющая собой двойной детектор (отсюда и название – от англ. Double Detector). Конструктивно DD-катушка выполнена из двух полукругов, сложенных с пересечением. ДД-катушки обладают высокой чувствительностью, однако на неоднородных грунтах могут выдать ложный сигнал.

Индуктивность катушки

При сборке МИ в домашних условиях очень важно добиться соответствия параметров собственноручно изготовленной поисковой катушки тем параметрам, которые заложены в выбранной схеме детектора. На величину индуктивности влияют геометрические размеры катушки, сечение провода, количество витков, плотность укладки и другие факторы. В сетях можно найти различные методы расчета индуктивности, несложные формулы и номограммы с пояснениями, как ими пользоваться. Несоблюдение этих рекомендаций может привести к тому, что собранная схема работать не будет.

Помехоустойчивость катушки

Поскольку монопетля устроена по аналогии с рамочной антенной, она чувствительна к многочисленным помехам. Для расширения помехоустойчивых способностей прибора используются несложные устройства типа:

  • экрана Фарадея, представляющего собой стальную трубку с оплеткой либо с обмоткой из фольги;
  • симметричных намоток бифиллярного или перекрестного типа.
Корзиночные катушки

На рис. ниже показана одна из модификаций корзиночной катушки МИ.

При всех своих достоинствах корзиночная катушка наделена двумя существенными недостатками:

  • сложность и трудоемкость выполнения качественной надежной намотки;
  • методики расчетов плоской и объемной корзинок существенно различаются и требуют применения соответствующих компьютерных программ.

Важно! При кустарной намотке катушки-корзинки оправка должна быть жесткой и прочной, поскольку суммарная сила натяжения всех витков достаточно велика, чтобы деформировать или сломать оправку.

Чтобы натягиваемые при намотке провода не прорезали каркас катушки, рекомендуется предварительно в прорези каркаса вклеить куски прочного пластика и лишь после этого начинать намотку.

Крепление катушки

Крепление провода катушки довольно часто выполняется на самодельных каркасах из фанеры, пластика и других подручных материалов, даже на компьютерных дисках. У фанеры много недостатков, в том числе:

Пластики на поликарбонатной основе этих недостатков лишены. Более того, два склеенных полимерных диска представляют собой герметичный корпус, расширяющий возможности использования МИ.

Самодельная штанга-держатель

Штанга-держатель является несущим элементом металлоискателя – на ней закрепляются поисковая катушка и блок управления. Основным требованием к штанге является прочность материала изготовления, поскольку на держатель в ходе поисковых работ действует постоянная весовая нагрузка от оператора. Повреждения несущей конструкции могут произойти в условиях пересеченной местности, в лесопосадках, в гористом районе. Поломка штанги может привести к вынужденному прекращению поисковых работ.

Обратите внимание! Определенных требований к штанге металлодетектора нет, каждый пользователь МИ вправе подогнать размеры и форму держателя под свой рост и вес.

При самостоятельном изготовлении металлодетектора для корпуса штанги-держателя в качестве исходного полуфабриката нередко используются костыли под локоть (канадки), в конструкции которых уже предусмотрены регулировка высоты стойки и подлокотный упор. Также популярны среди умельцев телескопические удочки и обычные металлопластиковые водопроводные трубы, из которых получаются полноценные держатели МИ.

Самодельный подводный металлоискатель

Процесс изготовления, сборки и наладки металлодетектора, предназначенного для металлодетекции под водой, идентичен работам по созданию обычного МИ. Однако необходимо указать на два существенных отличия, сопровождающих изготовление подводного МИ:

  • вся аппаратура должна размещаться в герметичном корпусе, не допускающем соприкосновения деталей с влагой;
  • для сообщения из-под воды о найденной находке желательно применять специальные световые индикаторы.

Этапы изготовления своими руками подводного МИ:

  1. Выбор схемы для работы в речной и морской воде.
  2. Изготовление печатной платы.
  3. Подсоединение источника питания.
  4. Размещение готовой платы с источником питания в герметичной емкости. Мастера рекомендуют в качестве корпуса применить тубу от герметика. Светодиодные лампочки-индикаторы выводятся на внешнюю поверхность тубы. Каждый стык дополнительно герметизируется силиконовым герметиком.
  5. Изготовление штанги из тонкостенной нержавеющей трубы или обычной пластиковой водопроводной трубы. Довольно часто используют корпус удочки.

Важно! Штанга не должна быть излишне легкой, чтобы не всплывать, но и очень тяжелой, чтобы не уйти ко дну.

  1. Закрепление собранного блока с печатной платой на штанге.
  2. Намотка поисковой катушки. Корпус катушки – стандартная полипропиленовая труба. Намотанный провод заливается герметиком.
  3. Пайка выводов катушки к многожильному проводу.
  4. Визуальная оценка герметичности изделия. Любые щели и стыки, «не внушающие доверия» на предмет герметичности, заливаются/замазываются герметиком.
  5. Проверка герметичности в воде.

Особенности глубинных МИ

В работе глубинных МИ используется RF-технология, эффективная в высокочастотном диапазоне. Передающая и приемная катушки взаимно перпендикулярны, могут работать на нескольких частотах одновременно. К мелким мишеням глубинные приборы нечувствительны, их объекты – крупные предметы, расположенные на местности с перепадами уровней грунта.

Если обратиться к многочисленным форумам любителей металлопоиска, которыми пестрят страницы Интернета, то обращает на себя внимание высокий уровень изготовления и наладки самодельных конструкций, о которых там рассказывается. Изготовленные своими руками металлодетекторы не уступают поисковой аппаратуре заводского исполнения, хотя обходятся во много раз дешевле. На рис. ниже показан самодельный «глубинник», рамка которого выполнена из прочных полимерных трубок.

Видео

Предназначение металлоискателя, или, как его еще называют, металлодетектора, - это поиск металлических изделий с помощью электрических или магнитных свойств, которые отличают их от окружающей среды. Проще говоря, при помощи металлодетектора можно найти металл даже в земле. Однако этой средой его возможности не ограничиваются, так как его применяют и в воде. Данным приспособлением пользуются службы охраны, криминальная служба, военные, геологи и рабочие многих других специальностей. Но подробная инструкция по сборке металлоискателя своими руками может пригодиться также и для применения устройства в домашнем хозяйстве.

Область применения прибора

Для тех, кто потерял кольцо или ключи и знает их примерное местоположение, металлоискатель станет настоящим спасением. Сделать самодельный металлоискатель не так уж и сложно , особенно если есть схема самодельного металлоискателя и подробное описание сборки. Чаще всего сборкой занимаются любители радиомеханики, кладоискатели, краеведы и военно-исторические объединения. Устройство дает возможность найти монету в верхнем слое грунта или большие металлические детали на внушительной глубине до 1,5 метра.

Такими свойствами обладают и самодельные устройства, но при помощи опытного радиомеханика можно собрать прибор и помощнее. Немало людей используют металлодетектор в коммерческих целях: при обнаружении разных деталей сдают их в металлолом, зарабатывая определенную сумму. Находки могут быть и более важные, к примеру, старинные вещи или настоящие клады в виде сундуков с сокровищами.

Заключается в использовании электромагнитной технологии. Катушкой создается электромагнитное поле, которое взаимодействует с токопроводящими предметами в результате этого создается вихревой ток, искажающий сигнал катушки. Даже при отсутствии токопроводимости, предмет может иметь свое магнитное поле, которое также будет создавать помехи, тем самым указывая на местонахождение предмета.

После поступления помех изменяется электромагнитный импульс, который поступает прямо на блок управления, издающий при этом звуковые сигналы или показывая данные на дисплее, свидетельствующие о находке. Устройства разделяются на множество групп и имеют огромное количество названий и классифицируются все они по множеству параметров.

Разновидности детекторов

Общие характеристики приборов:

Дискриминация является составным параметром, так как сигнальных выходов, скорее всего, 1 или 2, а определений по свойству и расположению предмета несколько. Однако, по реакции прибора, учитывая приближение к объекту, выделяются сигналы:

  • Пространственный - можно определить расположение объекта в месте поиска и глубину расположения.
  • Геометрический - возможность образного формирования длины и ширины находки.
  • Качественный - возможность предполагать о структуре находки.

Рабочие параметры

Все параметры чувствительности связаны с частотой генератора. Поэтому изначально металлоискатели классифицируют в зависимости от рабочей частоты:

Метод поиска металлических изделий

Существует больше 10 методов поиска, однако методы с оцифровкой сигналов и обработкой через компьютер относятся к профессиональному оборудованию. Схемы металлоискателей своими руками чаще всего изготавливают с учетом следующих методов поиска:

  • Параметрический.
  • Приемопередающий.
  • Накопление фазы.
  • Биение.

Без приемной катушки

Параметрические устройства не имеют ни приемной катушки, ни приемника. Детекция происходит благодаря влиянию предмета на индуктивную катушку генератора. В зависимости от добротности катушки будет меняться частота и амплитуда колебаний, что может фиксироваться по-разному, к примеру:

  • Измеряется частота и амплитуда.
  • Измеряется ток генератора.
  • Измерение напряжения петли ФАПЧ (фазовая автоподстройка частоты).

В большинстве случаев такие приборы применяют в качестве магнитодетекторов. Имеют плохую чувствительность, но дешевые и помехоустойчивые, а использование требует определенного навыка.

Со встроенным передатчиком

Приборы с приемником и передатчиком очень эффективны, но имеют сложное схемотехническое строение и для них нужны качественные катушки. Устройства с одной катушкой называются индукционными.

Щелчки после приближения к предмету

В металлоискателях с накоплением фазы могут быть с одной катушкой импульсного типа или с двумя генераторами. В устройстве с одной катушкой, при прохождении импульсов увеличивается сдвиг фазы и при достижении определенного уровня срабатывает дискриминатор и в наушники подается сигнал по типу щелчка. Чем ближе предмет, тем чаще повторяются щелчки.

Двухкатушечный металлоискател ь по схемотехнике проще импульсного, но и слабее по чувствительности, проницание тоже меньше до 2 раз.

Металлоискатели на биении

Устройства собираются с 2 генераторами, опорным и рабочим. Рабочий генератор настраивается на нулевое значение биения и в зависимости от звукового тона можно судить о месте расположения объекта, его размере и свойствах.

Сборка металлоискателя своими руками

Существует мнение, что фирменные образцы металлоискателей по многим параметрам превосходят самодельные устройства. Однако факты говорят обратное: если прибор правильно собрать, то самоделка может оказаться не только дешевле заводской конструкции, но и лучше. Многими кладоискателями приобретаются самые дешевые типы устройства, а в дальнейшем они либо самостоятельно собирают металлоискатель, либо покупают кастомный вариант.

Новичку или человеку, который плохо разбирается в электронике, может показаться сложной специальная терминология, формулы и схемы. Но при подробном разборе всей информации, становится ясно, что имея хотя бы средний уровень знаний, можно разобраться как сделать самодельный металлоискатель.

Самостоятельное изготовление печатной платы

Для дальнейшего размещения деталей металлоискателя нужна печатная плата. Для этого лучше всего использовать метод ЛУТ - лазерно-утюжная технология.

Изготовление происходит поэтапно в такой последовательности:

На последнем этапе проводится лужение дорожек. Паяльником размазывается раствор ЛТИ-120.

Монтаж радиодеталей на плату

На этом этапе сборки металлоискателя в подготовленную плату устанавливаются все элементы:

В данном случае используется старая схема, но можно найти и спаять похожий, современный вариант, так как усилитель К157УД2 в настоящее время найти непросто.

Изготовление катушки устройства

Самодельную катушку наматывают на жесткой оправе с радиусом 100 мм. Нужно намотать примерно 25 витков . Такой показатель является приемлемым в случае использования проволки ПЭВ с диаметром около 0,5 мм, но также можно использовать и другой крепкий материал.

Для выбора оптимального количества витков можно провести эксперимент, проверив устройство на улавливание монетки.

Каркас и дополнительные элементы

В качестве сигнального динамика может использоваться деталь из переносного приемника с сопротивлением Ом. Допускается применение китайских аналогов с таким же сопротивлением.

Для нормальной работы металлоискателя, нужно настроить чувствительность . Порог определяется при достижении равномерного, но не очень сильного потрескивания. Для этого используют два потенциометра с разной мощностью. Понадобится один с мощностью 10 кОм, а другой - 100 кОм. Для увеличения помехоустойчивости рекомендовано применять экранированный кабель для соединения катушки со схемой. Источником питания могут выступать аккумуляторные батареи. Минимальное напряжение должно составлять 12 В. Для устойчивости электросхемы на выходе устанавливается стабилизатор напряжения типа L7812.

После изготовления конструкции и проверки работоспособности нужно сделать корпус переносного устройства. Каждый любитель может создавать каркас по своему усмотрению из подручных предметов, но внимание нужно обратить на следующие рекомендации:

  • Для удобства и лучшей устойчивости штангу можно усилить, купив для этого несколько метров водопроводной ПВХ трубы и несколько перемычек для соединения. На верхней части желательно сделать подставку для рук. Идеальным вариантом будет изготовление подлокотника. В таком случае оператору будет легче пользоваться металлоискателем.
  • Плату нужно поместить в защищенную коробку, соответствующую ее размеру, и закрепить на корпусе.
  • В качестве питания используется аккумулятор от шуруповерта, который имеет небольшой вес и достаточную емкость. С учетом параметров может использоваться какой-нибудь другой вариант.
  • При создании корпуса и всей конструкции нужно учитывать то, что присутствие посторонних металлических элементов будет сильно искажать сигнал магнитного поля металлоискателя и его эффективность будет нарушена.

Эффективность устройства

Прибор, изготовленный по такой схеме , не будет эффективным при поиске мелких предметов на большой глубине, но некоторые советские монеты можно найти на глубине около 30−40 см, а крупный размер металлических деталей детектор чувствует на расстоянии около 1 метра и больше.

Такой самодельный вариант металлоискателя подойдет людям, осваивающим основы поиска или не имеющим возможности пользоваться дорогостоящей моделью. Специалистам или опытным кладоискателям эффективности прибора может быть недостаточно.

Сегодня мы поговорим о том, как самостоятельно сделать высокочувствительный металлоискатель своими руками в домашних условиях из подручных материалов. Также рассмотрим методики сборки, наглядные фото, платы, схемы и чертежи самодельных металлоискателей и металлодетекторов с различным принципом действия

Работа металлоискателя основана на принципе магнитного притяжения. Благодаря этому, устройством через поисковую катушку создается магнитное поле, а затем направляется МП в землю. Вторая катушка металлоискателя принимает обратные сигналы и сообщает про находку при помощи тонального сигнализатора. В момент, когда катушкой проводят над землей и металлический объект обнаруживается рядом с магнитным полем, тон будет изменяться тональность. Это изменение в поле означает, что Вы находитесь рядом с объектом поиска.

Нужно учитывать тот факт, что чем больше катушка, тем чувствительнее становится металлоискатель, хотя в современных приборах зачастую нужно устанавливать небольшие поисковые головки, но оснащенные мощными схемами. Но как его сделать самостоятельно и бесплатно?

Существует четыре типа металлоискателей:

1. Сверхнизкочастотный (СНЧ) искатель: самый простой из домашних средств, сделать его не составляет особого труда. Имеет возможность отслеживать различные металлы (при специальной настройке). Наиболее широко используемый тип.

2. Металлоискатель импульса (ИД): глубинный прибор, способен обнаруживать объекты, находящиеся очень глубоко. Популярен среди профессиональных искателей золота, потому что в основном настроен на цветные металлы.

3. Детектор на биениях: может обнаружить любой металл или минерал в диапазоне своего импульса (на глубину до 1 метра), если его сделать своими руками, то можно различить металлы только определенной группы. Это самый дешевый и простой тип прибора.

4. Радиодетектор: может обнаружить металлы, спрятанные до 1 метра в земле. Его очень быстро делают, в течение нескольких минут, это оптимальный вариант для демонстрации принципа работы прибора или для презентации его на ярмарках детского творчества. Он не такой популярный.

Независимо от типа металлоискателя, который планируете сделать своими руками, большинство детекторов имеют схожую конструктивную сборку. Из чего и как можно сделать самый примитивный металлоискатель.

1. Коробка управления: состоит из платы, микродинамика, аккумуляторного блока и микропроцессора.

2. Держатель: соединяет командный блок и катушку. Часто доходит до величины человеческого роста.

3. Катушка намагничевания: это деталь, которая чувствует металл, а также источник МП. Также известна как «поисковая головка», «петля» или «антенна», состоит из дисков.

4. Стабилизатор (по желанию): нужен для контроля положения детектора.

Делаем высокочастотный металлоискатель

Высокочастотный металлоискатель от прочих моделей отличается тем, что в нем используется сразу две катушки:

· передаточная катушка: внешний контур катушки, в котором находятся провода. Электричество передается по этим кабелям, благодаря этому и создается магнитное поле.

· принимающая катушка: катушка с мотком проволоки. Эта деталь принимает, перерабатывает и усиливает частоты, поступающие из металла в земле, и, следовательно, сигнализирует про находку клада.

Пошаговая инструкция, фото и схемы для начинающих, как сделать высокочастотный металлоискатель:

1. Нужно собрать командный блок. Его можно сделать из компа, из ноутбука или радио.

2. Найдите самую высокую АМ частоту в радио. Проверьте, чтобы приемник не был настроен на радиостанцию.

3. Теперь собираем поисковую головку. Для этого вырезаем два круга из обычного тонкого фанерного листа. Один диаметром где-то 15 сантиметров, другой чуть меньше – 10-13. Это нужно для того, чтобы одно кольцо смогло войти в другое. Теперь необходимо вырезать маленькие деревянные палочки, для параллельного расположения колец относительно друг друга. .

4. От этих пластин отводим 10-15 витков из эмалированного медного провода сечением 0,25 мм от внешнего круга. Теперь нужно прикрепить сооружение к блоку.

5. Подключение к шесту. Установите головку на нижнем конце, радио детектор наверху.

6. Теперь нужно включить радиочастоту, Вы должны услышать слабый тональный звук. Возможно, нужно будет немного поработать с настройкой радио-приемника. При необходимости можно прикрепить к комплекту наушники, для лучшей слышимости.

Собираем импульсный детектор

Нужно собрать блок управления. Взломайте обычный радиоприемник транзисторного типа, чтобы найти части, которые можно использовать. Нам понадобится:

· Аккумуляторная батарея 9 вольт;

· Усилительный транзистор 250 +;

· Маленький динамик на 8 Ом будет делать.

Собираем поисковую катушку

Нужно вырезать 3 кольца из фанеры 3мм, диаметр одного 15 см и двух – 16см. Используйте столярный клей, чтобы сделать бутерброд, с кругом 15 см в центре.

По краю оснастите фанеру 10 витками провода, как и в способе выше.

Настраиваем радиостанцию. Убедитесь, что тональный сигнал звучит, и радиостанция находится вне зоны досягаемости.

Включите блок. Возможно, нужно будет его наклонять. Также перед тем, как сделать металлоискатель своими руками, нужно проверить настройки платы, возможно, он не будет искать металлы из-за настроек платы.

Прикрепите поисковую головку к валу. Проверьте свой металлоискатель на вилке или прочих металлических деталях. Важно: перед тем, как сделать мощный металлоискатель своими руками, нужно подобрать более высокочастотный приемник, в таком случае советуем купить специальный блок для детектора в радио-магазине либо взять за первооснову металлоискатель Терминатор.

В принципе, все достаточно просто, нужно только найти все необходимое и сделать металлоискатель в домашних условиях самостоятельно. Вот еще один способ:

1. Что бы сделать металлоискатель в домашних условиях, первоначально вам понадобиться найти пустую коробку от обычного компакт-диска.

2. Теперь необходимо найти радиоприемник и приклеить его заднюю стенку к первой створке коробки диска. Для этой цели можно использовать как двусторонний скотч или же специальную клейкую ленту.

4. Теперь, когда подобное устройство почти готово, стоит приступить к настройкам. Включите радио и убедитесь в том, что устройство работает, причем работа должна обеспечиваться в AM-диапазоне. При этом также необходимо позаботиться о том, чтобы на данной частоте не работали другие радиостанции. Теперь стоит сделать звук больше и удостовериться, что кроме шума из приемника вы больше ничего не слышите.

5. Теперь проверяем работоспособность созданного металлоискателя. Начинаем закрывать коробку. В определенный момент вы услышите сильный звук. Это значит что радио смогло уловить волны электромагнитные, которые излучались калькулятором.

6. Приоткрывая коробку такой шум будет пропадать. Теперь достаточно приоткрыть коробку так, чтобы шум был не сильно, но слышен. В таком положении преподнесите коробку к любому металлическому предмету. После этого можно будет слышать опять этот сильный шум. Громкий звук говорит о том, что модель металлоискателя работает. В этом случае можно с помощью него искать не только потерявшиеся в доме металлические вещи, но и направиться в лес или в другое место, для того чтобы найти что-нибудь интересное, а может быть и драгоценное. Но все же лучше такое приспособление использовать именно в домашних условиях

Даже самый простой металлоискатель, изготавливаемый своими руками, нуждается в индуктивной катушке. Она представляет собой кольцо диаметром от 6-8 см до 14-16 см в зависимости от размеров металлических предметов, которые предстоит искать. Для изготовления самодельной катушки берется заготовка подходящего диаметра, на которую наматывается медный эмалированный провод сечением 0,4-0,5 мм. Количество витков можно рассчитать по известной формуле, учитывающей диаметр катушки. После намотки катушку аккуратно снимают с заготовки и закрепляют с помощью изоляционной ленты. Она защитит ее от механических повреждений и попадания атмосферной влаги. После этого поверх катушки наматывают фольгу-экран с разрывом длиной примерно 10-15 мм.

Полученный экран не должен представлять собой короткозамкнутый виток. Поверх экрана необходимо намотать с шагом 1 см медный луженый провод, который подключается к оплетке коаксиального кабеля, ведущего к электронному блоку. Катушка подключается к схеме двухпроводным коаксиальным кабелем.

Рекомендуется изготовить несколько катушек с разными внутренними диаметрами, что позволит подключать их применительно к каждому конкретному случаю. В заключение остается оформить металлоискатель конструктивно: электронный блок помесить в герметичный корпус, защищенный от влаги и пыли, а индуктивную катушку установить на конец неметаллического шеста необходимой длины. В качестве источника звукового сигнала, формируемого электронной схемой, может быть использован небольшой динамик или наушники, если предстоит пользоваться устройством в зашумленных местах. Электропитание прибора осуществляется от автономного источника тока – батарейки или аккумулятора.


Глубинный самодельный металлоискатель отличается от поверхностного более высокой чувствительностью, позволяющей находить металлические предметы на глубинах до нескольких метров. Кроме этого, в таких устройствах предусмотрена селективность, позволяющая игнорировать мелкие предметы. В технологическом отношении такое устройство ничем не отличается от вышеописанного. Как правило, индуктивная катушка для глубинного металлоискателя изготавливается большего диаметра (до 300 мм) и имеет более качественную защиту от внешних помех. Настройка такого устройства может потребовать использования электронной измерительной аппаратуры. Это позволит добиться необходимого уровня чувствительности устройства.

Любые металлодетекторы работают на основе принципов известных по школьной программе «токов Фуко». Не будем вдаваться в подробности экспериментов. При сближении поисковой катушки и металлического предмета в генераторе происходит изменение частоты, о чем прибор сообщает звуковым сигналом. Если в наушниках раздается писк, значит, под землей лежит что-то металлическое. Современные изобретатели работают над двумя задачами: увеличение поисковой глубины; улучшение идентификационных параметров приборов; снижение энергозатрат; удобные эксплуатационные характеристики.

Как сделать металлоискатель в домашних условиях? Стоит немножко познакомиться с электроникой и почитать физику для 7-го класса средней школы. Будет полезен опыт работы с некоторыми инструментами и подручными средствами. Необходимо изучить и опробовать некоторое количество электросхем, чтобы выбрать из них ту, которая действительно будет работать

Материалы, которые понадобятся при работе:

маленький генератор (от старого магнитофона); кварцевый резонатор; пленочные конденсаторы и резисторы; виниловое или деревянное кольцо для поисковой катушки; пластиковая, бамбуковая или деревянная трость – держатель; алюминиевая фольга; провода для обмотки катушки; пьезоэлектрический излучатель; металлическая коробка – экран; наушники для приема звукового сигнала от прибора; две одинаковые трансформаторные катушки; 2 батарейки «Крона»; упорство и терпение.

Последовательность сборки поискового металлоискателя Из фанерного круга диаметром 15 см изготавливают поисковую катушку: провод витками (15-20) наматывают на шаблон. Зачищенные концы припаивают к соединительному кабелю. По периметру катушки поверх проволоки наматывают слой ниток для закрепления. Все детали схемы паяются на печатной плате из текстолита в следующем порядке: конденсаторы, система резисторов, кварцевый фильтр, усилитель сигнала, транзистор, диоды, поисковый генератор. В подготовленный корпус вкладывают спаянную плату, соединяют ее с поисковой катушкой и крепят на палке-держателе. Сигнал от поисковой катушки, отраженный металлическим предметом, повышает частотность генератора. Усиленный кварцевым фильтром, он преобразуется амплитудным детектором в постоянный импульс, который вырабатывает звук.

Принцип работы металлоискателя сводится к тому, что при приближении металлического предмета к катушке индуктивности генератора - основного узла прибора - частота генератора изменяется. Чем ближе предмет и чем он больше, тем сильнее его влияние на частоту генератора.

А теперь рассмотрим конструкцию простого металлоискателя собранного на двух транзисторах. Схема металлоискателя Генератор выполнен на транзисторе VT1 по схеме емкостей трехточки. Генерация образуется из-за положительной обратной связи между эмиттерной и базовой цепями транзистора. Частота генератора зависит от емкости конденсаторов С1-С3 и индуктивности катушки L1. При приближении катушки к металлическому предмету индуктивность ее изменяется- увеличивается, если металл ферромагнитный, например железо, и уменьшается, если металл цветной- медь, латунь.


Но как проследить за изменением частоты? Для этого служит приемник, собранный на втором транзисторе. Это тоже генератор, собранный, как и первый, по схеме емкостной трехточки. Частота его зависит от емкости конденсаторов С4-С6 и индуктивности катушки L2 и не намного отличается от частоты первого генератора. Нужную разность частот подбирают подстроечником катушки. Кроме того, каскад на транзисторе VT2 совмещает в себе и функцию детектора, выделяющего колебания низкой частоты поступающих на базу транзистора высокочастотных колебаний. Нагрузкой детектора являются головные телефоны BF1; конденсатор С1 шунтирует нагрузку для колебаний высокой частоты.


Колебательный контур приемника индуктивно связан с контуром генератора, поэтому в коллекторной цепи транзистора VT2 протекают токи частотой обоих генераторов, а также ток разностной частоты, иначе говоря, частоты биения. Если, к примеру, частота основного генератора 460 кГц, а частота генератора приемника 459 кГц, то разностная составит 1кГц, т. е. 1000Гц. Этот сигнал и слышен в телефонах. Но стоит приблизить поисковую катушку L1 к металлу, как частота звука в телефонах изменится- в зависимости от вида металла она или понизится, или станет выше.

Вместо указанных на схеме подойдут П401, П402 и другие высокочастотные транзисторы. Головные телефоны- высокоомные ТОН-1 или ТОН-2, но их капсюли нужно включать параллельно, чтобы общее сопротивление составило 800...1200 Ом. Громкость звука в этом случае будет несколько выше. Резисторы- МЛТ-0,25, конденсаторы- КЛС-1 или БМ-2.
Катушка L1 представляет собой прямоугольную рамку размерами 175х230 мм, состоящую из 32 витков провода ПЭВ-2 0.35 (подойдет провод ПЭЛШО 0.37).

Конструкция катушки L2. В двух бумажных цилиндрических каркасах 6 размещены отрезки стержня диаметром 7 мм из феррита 400НН или 600НН: один (1) длинной 20...22мм, закрепленный постоянно, другой (2)-35...40мм (подвижный- для подстройки катушки). Каркасы обернуты бумажной лентой 3, поверх которой намотана катушка L2 (5)-55 витков провода ПЭЛШО (можно ПЭВ-1 или ПЭВ-2) диаметром 0,2мм. Выводы катушки закреплены резиновыми колечками 4.
Источники питания- батарея 3336, выключатель SA1- тумблер, разъем Х1- двухгнездая колодка.

Транзисторы, конденсаторы и резисторы смонтированы на плате из изоляционного материала. Плату соединяют с катушками, батареей питания, выключателем и разъемом, многожильным проводом в изоляции. Плату и остальные детали размещают в фанерном клееном футляре размерами 40х200х350 мм. Катушку L1 прикрепляют ко дну футляра, а внутри катушки на расстоянии 5...7 мм от ее витков размещают катушку L2. Рядом с этой катушкой крепят плату. Разъем и выключатель прикрепляют снаружи к боковой стенке футляра. Сверху к футляру крепят (желательно на клею) деревянную ручку примерно метровой длинны.

Налаживание металлоискателя начинают с измерения режимов работы транзисторов. Включив питание, измеряют напряжение на эмиттере первого транзистора (относительно общего провода- плюса питания)- оно должно быть 2.1В. Точнее это напряжение можно подобрать резистором R2. Затем измеряют напряжение на эмиттере второго транзистора - оно должно быть 1 в (устанавливают точнее подбором резистора R4). После этого медленным перемещением подстроечного сердечника катушки L2 добиваются появления в головных телефонах громкого чистого звука низкой частоты.

Приближая к поисковой катушке консервную банку, фиксируют начало изменения тона звучания. Как правило, это происходит на расстоянии 30...40 см. Более точной подстройкой частоты второго генератора добиваются наибольшей чувствительности прибора.

На элементах IC1.1 и IC1.2 собраны генераторы частот 160кГц и 161кГц соответственно. Где C1, L1- колебательный контур первого генератора, C4, L2- колебательный контур второго генератора. Индуктивность второго генератора L2 является поисковой катушкой. На элементе IC1.3 собран смеситель, на выходе которого получаем разность частот генераторов, равную 1000Гц. При появлении металлического предмета рядом с поисковой катушкой ее индуктивность меняется и меняет частоту генератора, что в свою очередь меняет частоту на выходе смесителя. Переменный резистор R5 является регулятором громкости. Элемент IC1.4 используется как буферный каскад-усилитель, отсекая лишние частоты и усиливая сигнал. На элементах VT1, VT2, VT3 собран двухтактный усилитель, рассчитанный на работу с наушниками сопротивлением 32-200 Ом.

Микросхема IC1 применена типа CD4030. Ее можно заменить любой другой микросхемой ИЛИ КМОП технологии. VT1, VT3- BC547, VT2- BC557. Все электролитические конденсаторы на напряжение 16В. Резисторы мощностью 0.125Вт. Напряжение питания- 6В.
Катушка L1- индуктивностью 100мГн.
Поисковая катушка L2- 140 витков провода диаметром 0.8мм, диаметр катушки- 150мм.

Настройка сводится к настройке генераторов на частоты около 160кГц с разностью в 1кГц.

При попадании в рабочую зону катушки металлического предмета между катушками меняется индуктивная связь. При этом на выводах катушки L2 появляется сигнал, ограниченный по амплитуде (если предмет большой) диодами VD1 и VD2, который впоследствии усиливается при воздействии операционного усилителя DA1.1.

На выходе фильтра, который построен на этом операционном усилителе, появляется постоянное напряжение, увеличивающееся по мере приближения катушек к цели из металла. Далее напряжение переходит на инвертирующий вход в компараторе DA2.1. Он сравнивает это напряжение с опорным, подаваемым ко второму его входу.

При срабатывании компаратора снижается его напряжение на выходе, это приводит к закрытию транзистора VT3, и активизируется звуковой генератор, сделанный на основе микросхемы DA2.2. Из звукового генератора сигнал переходит на усилитель, оттуда – на главный телефон от слухового аппарата. Регулировать громкость можно при помощи переменного резистора R38.
Для намотки катушки используется окружность диаметром 14 см. На каждую катушку положено сделать 200 витков медного провода с изоляцией. Провод должен иметь диаметр 0, 27 мм и отводить его нужно с середины катушки. Перед тем, как снять готовую катушку с оправы, ее нужно перевязать, после снятия – намотать на нее нить, чтобы витки плотнее прилегали друг к другу. Снятой катушке придают конфигурацию как на рисунке 2 и закрепляют ее нитками к пластиковой тарелке. Внизу должна находиться передающая катушка, а вверху – приемная.

На приемной катушке должен быть алюминиевый экран с отверстием, предназначенным для исключения короткозамкнутого витка. Необходимо выводы катушек подсоединить к устройству при помощи экранированного кабеля. Вертикальные витки катушек должны разделяться расстояниями в 25 мм. Последний этап – закрепление катушек клеем или герметиком.


Собрать такой аппарат под силу каждому, даже тем кто совершенно далек от электроники, просто нужно припаять все детали как на схеме. Металлоискатель состоит из двух микросхем. Они не требуют ни каких прошивок и программирования.

Питание 12 вольт, можно от пальчиковых батареек но лучше АКБ на 12в (небольшой)

Катушка намотана на оправке 190мм и содержит 25 витков провода ПЭВ 0.5

Характеристики:
- Потребляемый ток 30-40 мА
- Реагирует на все металлы дискриминации нет
- Чувствительность 25 миллиметровая монета - 20 см
- Крупные металлические предметы - 150 см
- Все детали не дорогие и легкодоступные.

Список необходимых деталей:
1)Паяльник
2)Текстолит
3)Провода
4)Сверло 1мм

Вот список необходимых деталей


Схема самого металлоискателя

В схеме используются 2 микросхемы (NE555 и К157УД2). Они достаточно распространенные. К157УД2 - можно выковырять из старой аппаратуры, что я с успехом и сделал







Конденсаторы 100нФ обязательно брать пленочные, вот такие, вольтаж берем как можно меньше


Распечатываем эскиз платы на простой бумаге


Вырезаем под ее размер кусок текстолита.


Плотно прикладываем и острым предметом продавливаем по местам будущих отверстий


Вот как должно получиться.


Далее берем любую дрель или сверлильный станок и сверлим отверстия




После сверления, нужно прочертить дорожки. Можно сделать это через , или просто прорисовать их Нитро лаком простой кисточкой. Дорожки должны получится точно такие же как на бумажном шаблоне. И травим плату.


В помеченных красным местах, ставим перемычки:



Далее просто припаиваем все компоненты на свои места.

Для К157УД2 лучше поставить переходную панельку.






Для намотки поисковой катушки нужен медный провод диаметром 0,5-0,7мм


Если такового нет, можно воспользоваться другим. У меня же медного лакированного провода оказалось не достаточно. Взял старый сетевой кабель.


Снял оболочку. Там проводов оказалось достаточно. Мне хватило двух жил, ими же и мотал катушку.




По схеме катушка диаметром 19 см и содержит 25 витков. Сразу замечу, что катушку нужно делать такого диаметра исходя из того, что вы будете искать. Чем больше катушка тем глубже поиск, но большая катушка плохо видит мелкие детали. Маленькая катушка хорошо видит мелкие детали, но глубина не большая. Я сразу намотал себе три катушки 23см(25 витков), 15см(17 витков) и 10см(13-15 витков). Если нужно накопать металлолом, то ставим большую, если на пляже мелочевку искать, то катушку меньше, ну сами разберетесь.

Катушку мотаем на чем угодно подходящего диаметра и плотно обматываем изолентой, что бы витки были плотно друг возле друга.




Катушка должна быть, как можно ровной. Динамик взял первый попавшийся.

Теперь все подключаем и пробуем схему на работоспособность.

После подачи питания, нужно подождать 15-20 секунд пока схема прогреется. Ставим катушку подальше от любого металла, лучше всего подвесить в воздухе. После начинаем крутить переменный резистор 100К пока не появятся щелчки. Как только щелчки появились крутим в обратную сторону, как только щелчки пропадут хватит. После этого, так же настраиваем резистор 10К.

На счет микросхемы К157УД2. Кроме той, что я выковырял, я еще 1 попросил у соседа и две купил на радио рынке. Вставил купленные микросхемы, включил прибор, а он отказался работать. Долго ломал голову, пока просто не поставил другую микросхему (ту что выпаял). И все сразу заработало. Так что вот для чего нужна переходная панелька, что бы подобрать живую микросхему и не мучатся с выпаиванием и впаиванием.

Покупные микросхемы

Можно купить примерно за 100-300 долларов. Цена на металлодетекторы сильно взаимосвязана с их глубиной обнаружения, далек не каждый металлоискатель может "видеть" монеты на глубине в 15 см. Помимо этого на стоимости металлодететкора еще сильно сказывается наличие распознавателя типа металлов ну и типа интерфейса, модные металлоискатели порой оснащают дисплеем для удобной работы.

В этой статье будет рассмотрен пример сборки своими руками мощного металлоискателя под названием Pirat. Прибор способен улавливать под землей монеты на глубине в 20 см. Что же касается крупных предметов, то здесь вполне реальна работа на глубине и во все 150 см.


Видео работы с металлоискателем:

Такое название этот металлоискатель получил из-за того, что он является импульсным, это обозначение двух первых его букв (PI-импульс). Ну а RA-T созвучно со словом radioskot - это название сайта разработчиков, где была и выложена самоделка . По словам автора, собирается Пират очень просто и быстро, для этого хватит даже начальных навыков в работе с электроникой.

Недостатком такого устройства является то, что оно не имеет дискриминатора, то есть не умеет распознавать цветные металлы. Так что поработать с ним на загрязненных различного рода металлами участках не получится.

Материалы и инструменты для сборки:
- микросхема КР1006ВИ1 (или ее зарубежный аналог NE555) - на ней строится передающий узел;
- транзистор IRF740;
- микросхема К157УД2 и транзистор ВС547 (на них собирается приемный узел);
- провод ПЭВ 0.5 (для наматывания катушки);
- транзисторы типа NPN;
- материалы для создания корпуса и так далее;
- изолента;
- паяльник, провода, прочий инструмент.

Остальные радиокомпоненты можно увидеть на схеме.





Еще нужно найти подходящую пластиковую коробочку для монтажа электронной схемы. Еще будет нужна пластиковая труба для создания штанги, на которую крепится катушка.

Процесс сборки металлоискателя:

Шаг первый. Создаем печатную плату
Самой сложной частью устройства является, конечно же, электроника, поэтому с нее и целесообразно начать. В первую очередь нужно сделать печатную плату. Всего есть несколько вариантов плат, в зависимости от используемых радиоэлементов. Есть плата для NE555, а есть плата на транзисторах. Все необходимые файлы для создания платы есть к статье. Также в интернете можно найти и другие варианты плат.

Шаг второй. Устанавливаем электронные элементы на плату
Теперь плату нужно спаять, все электронные элементы устанавливаются в точности, как на схеме. На картинке слева можно увидеть конденсаторы. Эти конденсаторы являются пленочными и имеют высокую термостабильность. Благодаря этому металлоискатель будет работать более стабильно. Особенно это актуально, если пользоваться металлоискателем осенью, когда на улице временами уже достаточно холодно.








Шаг третий. Источник питания для металлоискателя
Для питания устройства нужен источник от 9 до 12 В. Важно отметить, что прибор в плане потребления энергии довольно прожорлив, и это логично, ведь он и мощный. Одной батарейки крона тут надолго не хватит, рекомендуется применять сразу 2-3 батареи, которые соединяют параллельно. Еще можно использовать один мощный аккумулятор (лучше всего заряжаемый).



Шаг четвертый. Собираем катушку для металлоискателя
В связи с тем, что это импульсный металлоискатель, здесь точность сборки катушки не так важна. Оптимальным диаметром является оправка 1900-200 мм, всего нужно намотать 25 витков. После того, как катушка будет намотана, ее нужно хорошенько обмотать сверху изолентой для изоляции. Чтобы увеличить глубину обнаружения катушки, нужно намотать ее на оправку диаметром порядка 260-270 мм, а количество витков снизить до 21-22. Провод при этом используется диаметром 0.5 мм.

После того, как катушка будет намотана, ее нужно установить на жестком корпусе, на нем не должно быть металла. Здесь нужно немного подумать и поискать любой подходящий по размерам корпус. Он нужен для того, чтобы защитить катушку от ударов во время работы с устройством.

Выводы от катушки припаиваются к многожильному проводу, диаметром около 0.5-0.75 мм. Лучше всего, если это будут два, свитые между собой провода.

Шаг пятый. Настраиваем металлоискатель

При сборке точно по схеме настраивать металлоискатель не требуется, он и так имеет максимальную чувствительность. Для более тонкой настройки металлоискателя нужно покрутить переменный резистор R13, нужно добиться редких щелчков в динамике. Если достичь этого получается только в крайних положения резистора, то необходимо сменить номинал резистора R12. Переменный резистор должен настраивать устройство на нормальную работу в средних положениях.