Основные способы очистки воды. Основные способы очистки воды Методы очистки питьевой воды

В реках и других водоемах происходит естественный процесс самоочищения воды. Однако он протекает медленно. Пока промышленно - бытовые сбросы были невелики, реки сами справлялись с ними. В наш индустриальный век в связи с резким увеличением отходов водоемы уже не справляются со столь значительным загрязнением. Возникла необходимость обезвреживать, очищать сточные воды и утилизировать их.

Очистка сточных вод - обработка сточных вод с целью разрушения или удаления из них вредных веществ. Освобождение сточных вод от загрязнения - сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода). Очистка сточных вод - вынужденное и дорогостоящее мероприятие, представляющее собой довольно сложную задачу, связанную с большим разнообразием загрязняющих веществ и появлением в их составе новых соединений.

Методы очистки вод можно разделить на 2 большие группы: деструктивные и регенеративные.

В основе деструктивных методов лежат процессы разрушения загрязняющих веществ. Образующиеся продукты распада удаляются из воды в виде газов, осадков или остаются в воде,. но уже в обезвреженном виде.

Регенеративные методы - это не только очистка сточных вод, но и утилизация ценных веществ, образующихся в отходах.

Методы очистки вод можно разделить на: механические, химические, гидрохимические, электрохимические, физико-химические и биологические. Когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примеси.

Сущность механического метода состоит в том, что из сточных вод путем отстаивания и фильтрации удаляются механические примеси. Грубодисперсные частицы в зависимости от размеров улавливаются решетками, ситами, песколовками, септиками, навозоуловителями различных конструкций, а поверхностные загрязнения - нефтеловушками, бензомаслоуловителями, отстойниками. Механическая очистка позволяет выделять из бытовых сточных вод до 60-75% нерастворимых примесей, а из промышленных до 95%, многие из которых как ценные примеси, используются в производстве.

Химический метод заключается в том, что в сточные воды добавляют различные химические реагенты, которые вступают в реакцию с загрязнителями и осаждают их в виде нерастворимых осадков. Химической очисткой достигается уменьшение нерастворимых примесей до 95% и растворимых до 25%.

Гидромеханические методы применяют для извлечения из сточных вод нерастворимых грубодисперсных примесей органических и неорганических веществ путем отстаивания, процеживания, фильтрования, центрифугирования. С этой целью используют различные конструктивные модификации сит, решеток, песколовок, отстойников, центрифуг и гидроциклонов.

Электрохимические методы очистки сточных вод от различных растворимых и диспергированных примесей включают анодное окисление и катодное восстановление, электрокоагуляцию, электродиализ. Процессы, лежащие в основе этих методов, протекают при пропускании через сточную воду электрического тока. Под действием электрического поля положительно заряженные ионы мигрируют к катоду, а заряженные отрицательно - к аноду. В прикатодном пространстве происходят процессы восстановления, а в прианодном - процессы окисления.

Физико-химические методы очистки сточных вод многообразны. Это коагуляция, флотация, адсорбционная очистка, ионный обмен, экстракция, обратный осмос и ультрафикация. При физико-химическом методе обработки из сточных вод удаляются тонкодисперсные и растворенные неорганические примеси и разрушаются органические и плохо окисляемые вещества.

Биохимические методы очистки сточных вод. Применяются для очистки хозяйственно-бытовых и промышленных сточных вод от органических и некоторых неорганических (сероводорода, сульфидов, аммиака, нитратов и др.) веществ. Процесс очистки основан на способности микроорганизмов использовать эти вещества для питания, превращения их в воду, диоксид углерода, сульфат-фосфат-ион и др. и увеличивая свою биомассу.

Также к основным методам очистки воды относятся нижеперечисленные методы:

Осветление - удаление из воды взвешенных веществ. Реализуется фильтрацией воды через пористые фильтроэлементы (картриджи) или через слой фильтроматериала. Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры. В осветлителях и отстойниках вода движется с замедленной скоростью, вследствие чего происходит выпадение в осадок взвешенных частиц. В целях осаждения мельчайших коллоидных частиц, которые могут находиться во взвешенном состоянии неопределенно долгое время, к воде прибавляют раствор коагулянта (обычно сернокислый алюминий, железный купорос или хлорное железо). В результате реакции коагулянта с солями многовалентных металлов, содержащимися в воде, образуются хлопья, увлекающие при осаждении взвеси и коллоидные вещества.

Коагуляция - обработка воды специальными химическими реагентами для укрупнения частиц загрязнений. Делает возможными или интенсифицирует осветление, обесцвечивание, обезжелезивание. Коагуляцией примесей воды называют процесс укрупнения мельчайших коллоидных и взвешенных частиц, происходящий вследствие их взаимного слипания под действием сил молекулярного притяжения.

Окисление - обработка воды кислородом воздуха, гипохлоритом натрия, марганцевокислым калием или озоном. Обработка воды окислителем (или их комбинацией) делает возможными или интенсифицирует обесцвечивание, дезодорацию, обеззараживание, обезжелезивание, деманганацию.

Обесцвечивание - удаление или видоизменение веществ, придающих воде цвет. Реализуется различными методами, в зависимости от причины цветности. Обесцвечивание воды, т.е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

Обеззараживание - обработка воды окислителями и/или УФ-излучением для уничтожения микроорганизмов. Обеззараживание воды (удаление бактерий, спор, микробов и вирусов) является заключительным этапом подготовки воды питьевой кондиции. Использование для питья подземной и поверхностной воды в большинстве случаев невозможно без обеззараживания. Обычными методами при очистке воды являются:

1. Хлорирование путем добавления хлора, диоксида хлора, гипохлорита натрия или кальция.

2. Озонирование. При применении озона для подготовки питьевой воды используются окислительные и дезинфицирующие свойства озона.

3. Ультрафиолетовое облучение. Используется энергия ультрафиолетового излучения для уничтожения микробиологических загрязнений. Кишечная палочка, бацилла дизентерии, возбудители холеры и тифа, вирусы гепатита и гриппа, сальмонелла погибают при дозе облучения менее 10 мДж/см2, а ультрафиолетовые стерилизаторы обеспечивают дозу облучения не менее 30 мДж/см2.

Обезжелезивание/деманганация - превращение растворённых соединений железа и мрования, как правило, через специальные фильтроматериалы. Решение проблемы очистки воды от железа представляется довольно сложной и комплексной задачей. К наиболее часто используемым методам можно отнести:

1. Аэрирование - окисление кислородом воздуха с последующим осаждением и фильтрацией. Расход воздуха для насыщения воды кислородом составляет около 30 л/м3. Это традиционный метод, применяемый уже много десятилетий. Реакция окисления железа требует довольно длительного времени и больших резервуаров, поэтому этот способ используется только на крупных муниципальных системах.

2. Каталитическое окисление с последующей фильтрацией. Наиболее распространенный на сегодняшний день метод удаления железа, применяемый в высокопроизводительных компактных системах. Суть метода заключается в том, что реакция окисления железа происходит на поверхности гранул специальной фильтрующей среды, обладающей свойствами катализатора (ускорителя химической реакции окисления). Наибольшее распространение в современной водоподготовке нашли фильтрующие среды на основе диоксида марганца (MnO2). Железо в присутствии диоксида марганца быстро окисляется и оседает на поверхности гранул фильтрующей среды. Впоследствии большая часть окисленного железа вымывается в дренаж при обратной промывке. Таким образом, слой гранулированного катализатора является одновременно и фильтрующей средой. Для улучшения процесса окисления в воду могут добавляться дополнительные химические окислители.

Умягчение - замена катионов кальция и магния в воде на эквивалентное количество катионов натрия или водорода. Реализуется фильтрованием воды через специальные ионообменные смолы. С жесткой водой сталкивался каждый, достаточно вспомнить о накипи в чайнике. Жесткая вода не годится при окрашивании тканей водорастворимыми красками, в пивоварении, производстве водки. В ней хуже пенится стиральный порошок и мыло. Высокая жесткость воды делает её непригодной и для питания газовых и электрических паровых котлов и бойлеров. Слой накипи в 1,5 мм снижает теплоотдачу на 15%, а слой толщиной 10 мм - уже на 50%. Снижение теплоотдачи ведет к увеличению расхода топлива или электроэнергии, что, в свою очередь, ведет к образованию прогаров, трещин на трубах и стенках котлов, выводя преждевременно из строя системы отопления и горячего водоснабжения. Наиболее эффективным способом борьбы с высокой жесткостью является применение автоматических фильтров - умягчителей. В основе их работы лежит ионообменный процесс, при котором растворенные в воде жесткие соли заменяются на мягкие, которые не образуют твердых отложений.

Обессоливание - удаление из воды растворённых солей на ионообменных смолах или фильтрование воды через специальные плёнки (мембраны), пропускающие только молекулы воды.

Все большее значение в охране поверхностных вод от загрязнения и засорения приобретают агролесомелиорация и гидротехнические мероприятия. С их помощью можно предотвращать заиление и зарастание озер, водохранилищ и малых рек. Выполнение этих работ позволит уменьшить загрязненный поверхностный сток и будет способствовать чистоте водоемов.

По данным Всемирной организации здравоохранения (ВОЗ) ежегодно в мире из-за низкого качества воды умирает около 5 млн. человек. Инфекционная заболеваемость населения, связанная с водоснабжением, достигает 500 млн. случаев в год. Это дало основание назвать проблему водоснабжения доброкачественной водой в достаточном количестве проблемой номер один .

В природе вода никогда не встречается в виде химически чистого соединения. Обладая свойствами универсального растворителя, она постоянно несет большое количество различных элементов и соединений, состав и соотношение которых определяется условиями формирования воды, составом водоносных пород. Из грунта атмосферная вода поглощает углекислоту и становиться способной растворять по пути своего движения минеральные соли

Проходя через породы, вода приобретает свойства, характерные для них. Так, при прохождении через известковые породы, вода становится известковой, через доломитовые породы - магниевой. Проходя через каменную соль и гипс, вода насыщается сернокислыми и хлористыми солями и становится минеральной.

После постройки колодца, да и любого другого источника водоснабжения, необходимо провести исследования качества и состава воды для определения пригодности ее к использованию и потреблению. Надо помнить, что хозяйственно-питьевая вода относится к пищевым продуктам и ее показатели должны отвечать согласно Закону РФ "О санитарно-эпидемическом благополучии населения" от 19.04.91года, санитарным правилам СанПиН 4630-88 и требованию ГОСТа 2874-82 "Вода питьевая".

Качество воды характеризуется ее физическими, химическими и бактериологическими свойствами .

К физическим свойствам относятся ее температура, цветность, мутность, привкус и запах.

Температура воды из колодцев должна быть 7.12°С. Вода, имеющая более высокую температуру, теряет свои освежающие свойства. Температура ниже 5° С считается вредной для здоровья людей и приводит к простудным заболеваниям.

Под цветностью понимают ее окраску и выражают в градусах по платиново-кобальтовой шкале.

Мутность определяется содержанием в воде взвешенных частиц и выражается в миллиграммах на литр (мг/л). Вода подземных источников имеет малую мутность.

Наличие в воде органических веществ резко ухудшает ее физические (органолептические) показатели, вызывая различного рода запахи (землистый, гнилостный, рыбный, болотный, аптечный, камфорный, запах нефтепродуктов, хлорфенольный и т.д.), повышает цветность, вспениваемость, оказывает неблагоприятное действие на человека и животных.

Установлено, что незначительные изменения физических свойств воды снижают секрецию желудочного сока, а приятные вкусовые ощущения повышают остроту зрения и частоту сокращений сердца (неприятные - снижают).

Химические свойства воды характеризуются следующими показателями: активной реакцией, жесткостью, окисляемостью, содержанием растворенных солей.

Активная реакция воды определяется концентрацией водородных ионов. Обычно она выражается через pH. При pH=7 среда нейтральная; при pH<7 среда кислая, при pH>7 среда щелочная.

Жесткость воды определяется содержанием в ней солей кальция и магния. Она выражается в миллиграмм-эквивалентах на литр (мг·экв/л). Вода подземных источников имеет большую жесткость, а вода поверхностных источников - относительно невысокую (3-6 мг·экв/л).

Жесткая вода содержит много минеральных солей, от которых на стенках посуды, котлах и других агрегатах образуется накипь - каменная соль. Жесткая вода губительна и непригодна для систем водоснабжения. В такой воде плохо заваривается чай, плохо растворяется мыло, почти не развариваются овощи, особенно бобовые.

Мягкая вода должна иметь жесткость не более 10 мг·экв/л.

Окисляемость обуславливается содержанием в воде растворенных органических веществ и может служить показателем загрязненности источника сточными водами. Для колодцев особую опасность представляют сточные воды, в составе которых есть белки, жиры, углеводы, органические кислоты, эфиры, спирты, фенолы, нефть и др.

Содержание в воде растворенных солей (мг/л) характеризуется плотным (сухим) осадком. Вода поверхностных источников имеет меньший плотный осадок, чем вода подземных источников, т.е. содержит меньше растворенных солей. Предел минерализации питьевой воды (сухого остатка) 1000 мг/л был в свое время установлен по органолептическому признаку. Воды с большим содержанием солей имеют солоноватый или горьковатый привкус. Допускается содержание их в воде на уровне порога ощущения: 350 мг/л для хлоридов и 500 мг/л для сульфатов. Нижним пределом минерализации, при котором гомеостаз организма поддерживается адаптивными реакциями, является сухой остаток в 100 мг/л, оптимальный уровень минерализации 200-400 мг/л. При этом минимальное содержание кальция должно быть не менее 25 мг/л, магния - 10 мг/л.

Степень бактериологической загрязненности воды определяется числом бактерий, содержащихся в 1 куб. см воды и должен быть до 100. Вода поверхностных источников содержит бактерии, внесенные сточными и дождевыми водами, животными и т.д. Вода подземных артезианских источников обычно не загрязнена бактериями.

Различают патогенные (болезнетворные) и сапрофитные бактерии. Для оценки загрязненности воды патогенными бактериями определяют содержание в ней кишечной палочки. Бактериальное загрязнение измеряют коли-титром и коли-индексом. Коли-титр - обьем воды, в котором содержится одна кишечная палочка, должен составлять не менее 300. Коли-индекс - число кишечных палочек, содержащихся в 1 л воды, должен составлять до 3.

Проблема очистки воды охватывает вопросы физических, химических и биологических ее изменений в процессе обработки с целью сделать ее пригодной для питья, т. е. очистки и улучшения ее природных свойств.

Основными методами очистки воды для хозяйственно-питьевого водоснабжения являются осветление, обесцвечивание и обеззараживание.

Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры. В осветлителях и отстойниках вода движется с замедленной скоростью, вследствие чего происходит выпадение в осадок взвешенных частиц. В целях осаждения мельчайших коллоидных частиц, которые могут находиться во взвешенном состоянии неопределенно долгое время, к воде прибавляют раствор коагулянта (обычно сернокислый алюминий, железный купорос или хлорное железо). В результате реакции коагулянта с солями многовалентных металлов, содержащимися в воде, образуются хлопья, увлекающие при осаждении взвеси и коллоидные вещества.

Коагуляцией примесей воды называют процесс укрупнения мельчайших коллоидных и взвешенных частиц, происходящий вследствие их взаимного слипания под действием сил молекулярного притяжения.

Фильтрование - самый распространенный метод отделения твердых частиц от жидкости. При этом из раствора могут быть выделены не только диспергированные частицы, но и коллоиды.

В процессе фильтрования происходит задержание взвешенных веществ в порах фильтрующей среды и в биологической пленке, окружающей частицы фильтрующего материала. Вода освобождается от взвешенных частиц, хлопьев коагулянта и большей части бактерий.

Обесцвечивание воды, т. е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

Обеззараживание воды, или ее дезинфекция, заключается в полном освобождении воды от болезнетворных бактерий. Так как полного освобождения ни отстаивание, ни фильтрование не дают, с целью дезинфекции воды применяют хлорирование и другие способы, описанные ниже.

Традиционные методы очистки воды не позволяют удалять из неё многие виды загрязнений (особенно содержащиеся в растворенном вилле), которые могут встречаться в поверхностных водоисточниках. Эти методы часто не обеспечивают получение воды стандартного качества даже в тех случаях когда требуется удаление привкусов и запахов природного происхождения. В связи с этим пытаются использовать дополнительные методы обработки воды: окисление, сорбцию, ионный обмен, физические методы и др. Для целей хозяйственно-питьевого водоснабжения, как правило приходиться обрабатывать большое количество воды, кроме того, стоимость её обработки должна быть невелика. Поэтому в практике водоснабжения пока получают применение только первые два метода: окисление и сорбция.

Окислительный метод очистки воды

Окислители уже давно используются в технологии водоподготовки в основном благодаря своему бактерицидному действию. Ещё в конце прошлого столетия были проведены первые опыты по обеззараживанию воды хлором и азоном. Окислители используются также для удаления цветности воды, её привкусов и запахов, т.е. органических веществ природного происхождения. Наряду с газообразным хлором и озоном находят применение различные хлорсодержащие продукты (хлорная известь, гипохлориты, двуокись хлора) и перманганат калия. Эти окислители обладают различными окислительно-восстановительным потенциалом. Однако эффективность их действия определяется не только величиной окислительно-восстановительного потенциала, а также другими факторами, которые необходимо учитывать при оценке действия окислителя на те или иные виды загрязнений. К таким фактором можно отнеси скорость взаимодействия окислителя с удаленными из воды веществами, а также проявляемые в ряде случаев особенности взаимодействия. При этом необходимо иметь в виду, что очистка воды от органических соединений с помощью окислителей достигается путём их разложения т.е. перевода в другие соединения. Очистка от неорганических соединений в том числе от ионов металлов может быть достигнута только в том случае, если последние будут переведены при действие окислителей в нерастворимую форму. Юлагодаря этому они могут быть переведены из воды с помощью отстаивания, фильтрования и т.п.

Наиболее характерные окислители и их взаимодействие с характерными видами загрязнений воды.

Хлор. Как известно, взаимодействие хлора с водой протекает по уравнению

Cl2 + H2O ↔ HCl + HClO

Образовавшаяся в результате гидролиза хлора хлорноватистая кислота диссоциирует по уравнению

HClO ↔ H+ + OCl–

Хлор является хорошим дезинфектантом. Его бактерицидное действие проявляется по отношению к бактериям и некоторым видам врусов. Обеззараживающий эффект зависит от дозы хлора, времени его контакта с водой, степени загрязненности воды и других услвий. В реакцию взаимодействия с хлором могут вступать различные химические соединения.

Окислению хлором подвергаются природные гуминовые вещества, обусловливающие цветность воды. Имеются данные, что хлорирование нарушает устойчивость коллоидных частиц водного гумуса, способствуя их коагуляции.

Хлор сравнительно легко взаимодействует с фенолами. Исследования, проведённые в Институте коллоидной химии воды позволили установить, что из класса фенолов наиболее устойчивыми по отношению к хлору является одноатомные фенолы – оксибензол, крезол, нафтол. Двухатомные фенолы (пирокатехин, резорцин, гидрохинон) и трёхатомные фенолы (флороглюцин, резорцин, гидрохинон) разрушаются под действием под действием хлора значительно интенсивнее.

Проведены опыты по выяснению характера взаимодействия хлора с фенолом (оксибензолом). Эти данные показывают, что при малых дозах хлора фенол не разрушается, хотя наблюдается расход окислителя. По-видимому, на этой стадии идёт образование хлорпроизводных фенола, что подтверждалось появление типичного «аптечного» запаха воды. С увеличением дозы хлора количество фенола начинает снижаться, что свидетельствуето его разрушении. При полном разрушении фенола расход хлора прекращается. Исходя из количества прореагировавшего хлора можно подсчитать, что в данном случае окисление проходит в основном до малеиновой кислоты. При этом для протекания реакции необходим определенный избыток хлора. Особенности взаимодействия хлора с фенолом являются образование нежелательных хлорпроизводных при недостаточных дозах хлора и необходимость значительного избытка хлора для их разрушения, что в практических условиях требует специального процесса дехлорирования воды.

В ходе исследования выполненных Буртшелом и его сотрудниками установлено, что большинство хлорпроизводных фенола обладают неприятным запахом, особенно 2-хлорфенол, 2,4 –дихлорфенол, 2,6 –дихлорфенол и трихлорфенол.

Весьма специфичным является взаимодействие хлора с аммиаком, так как реакция между ними протекает достаточно быстро с образованием хлораминов. Например, хлор взаимодействует с аммиаком примерно в 100 раз быстрее, чем с фенолом. В зависимости от условий протекания реакции, в том числе от соотношения концентраций хлора и аммиака, могут образовываться различные хлорамины: монохлорамины (NH4Cl), дихлораммины (NHCl2) и трихлораммины (NCl3).

Хлорамины, также как и хлор, являются окислителями и обладают бактерицидным действием, которое проявляется, однако, значительно медленнее и слабее. При наличии связанного хлора рекомендуется производитьобеззараживание воды увеличенными дозами хлора и при более длительном его контакте с обрабатываемой водой по сравнению со свободным хлором.хлорамины значительнее медленнее, чем хлор взаимодействуют с органическими веществами. Поэтому на практике в воду часто специально добавляют аммиак, чтобы «связать» хлор в хлорамины и воспрепятствовать образованию нежелательных органических хлорпроизводных, например хлорфенолов. Этот же пример используют в тех случаях, когда необходимо продлить бактерицидное действие хлора. Однако если требуется провести глубокое и быстрое окисление находящихся в воде загрязнений и если при наличии в обрабатываемой воде аммиака неизбежно образуются хлорамины, на практике прибегают к избыточному хлорированию.

Большое число исследований посвящено вопросу изучения взаимодействия хлора с пестицидами. Имеющиеся данные показывают, что хлор плохо окисляет большинство хлорсодержащих органических пестицидов, а в тех случаях когда эта реакция протекает, могут образовываться токсичные продукты: например, альдрин при окислении хлором превращается в дельдрин, который более токсичен, чем исходный продукт.

Фосфорганические пестициды окисляются хлором несколько лучше, однако и здесь могут образовываться более токсичные продукты по сравнению с первоначальным веществом. Так, при взаимодействии хлора с паратионом последний превращается в более токсичный продукт – параоксон.

Имеется значительная группа органических химических соединений, с которыми хлор практически не взаимодействует или взаимодействует очень слабо. К таким соединениям относятся синтетические поверхностно-активные вещества, в частности хлорный сульфонол, соединения, входящие в состав нефтей и нефтепродуктов и др. свободный хлор способен окислять некоторые металлы, переводя их в труднорастворимые соединения, благодаря чему они могут быть удалены из воды. Так, например, сравнительно легко окисляется хлором двухвалентное железо.

Двуокись хлора представляет собой ядовитый взрывоопасный газ, хорошо растворимый в виде. При нормальных условиях один объём воды растворяет около 30 объёмов двуокиси хлора. Чаще всего используют способ, основанный на окислении хлорита натрия хлором:

2NaClO2 + Cl2 → 2 запахов. Двуокись хлора весьма энергично ClO2 + 2NaCl

Наряду с высоким бактерицидным действием двуокиси хлора многие исследователи отмечают также эффективность её применения с целью устранения привкусов и запахов. Двуокись хлора весьма энергично взаимодействует с фенолами. Скорость протекания этой реакции во много раз превышает скорость окисления фенола хлором. Исследователями было установлено, что двуокись хлора, как и хлор, является мало эффективным реагентом по отношению к нефтепродуктам и не снимет вызываемые ими привкусы и запахи. Плохо взаимодейтвует двуокись хлора и синтетическими поверхносто-активными веществами. В отличие от хлора двуокись хлора не взаимодействует с аммиаком, и поэтому присутствие последнего в воде не влияет на её окислительное действие. Отмечая, что двуокись хлора имеет преимущество перед другими окислителями при очистке воды от марганца, так как реакция окисления марганца двуокисью хлора протекает практически мгновенно.

Перманганат калия. Хотя этот реагент начал использоваться для очистки воды давно, но только в последние десятилетия получил широкое внедрение в ряде стран, особенно при необходимости снижения привкусов и запахов воды и удаления из неё двухвалентного железа и марганца.

Особенностью перманганата калия является то, что он, действуя как окислитель, сам восстанавливается до двуокиси марганца. Некоторые исследователи приписывают двуокиси марганца немаловажную роль в процессе удаления загрязнений из воды, считая, что она образует в воде тонкодисперсный осадок, способный сорбироваться на своей поверхности некоторые виды загрязнений, повышая тем самым общий эффект очистки воды. При этом дозы перманганата можно подбирать простейшим способом исходя из специфической фиолетовой окраски, присущей раствору самого перманганата.

Перманганат калия способен окислять весьма ограниченное количество пестицидов. При взаимодействии перманганата калия с пестицидами так же, как и при действии хлора, могут образоваться продукты более токсичные, чем сами пестициды.

Относительно бактерицидное действие перманганата калия существуют разноречивые мнения. Одни исследователи считают, что перманганат калия обладает хорошим бактерицидным действием и что это позволяет, применяя его с целью устранения привкусов и запахов, отказаться от обработки воды хлором. Другие исследователи отмечают, что перманганат калия в обычных для устранения запахов воды дозах обладает слабым бактерицидным и вирулицидным действием.

Озон – бесцветный газ с сильным своеобразным запахом, токсичен, взрывоопасен, сравнительно легко самопроизвольно разлагается, превращаясь в кислород, с выделением энергии. В чистом и сухом воздухе разложение его происходит медленнее, чем во влажном и загрязненном. Ещё быстрее озон разлагается в воде при высоких значения рН. Он является очень слабым окислителем.

Получают озон путём воздействия тихого электрического разряда на кислород воздуха или чистый кислород в специальных генераторах. Вырабатываемый при этом продукт представляет собой не чистый озон, а смесь его с воздухом или кислородом.

Для создания условий взаимодействия озона с находящимися в воде веществами он должен быть переведён из газовой фазы в воду и растворён в ней. Для этой цели используют различные способы смещения озоно-газовой смеси с водой: барботирование, инжекцию с помощью эмульгаторов, механическое смещение и т.д.

Многочисленными исследованиями установлено, что озон обладает высоким бактерицидным действием. Кроме того, отмечено более сильное действие озона на споровые формы, а также более быстрое обеззараживание действие озона по сравнению с хлором. Вместе с тем обработка воды озоном имеет свои особенности, которые часто не позволяют реализовать его преимущества как обеззараживающего реагента. В связи с этим иногда наряду с обработкой воды озоном перед подачей в сеть ей подвергают дополнительному обеззараживанию хлором.

Озон по сравнению с хлором и перманганатом калия значительно глубже окисляет фосфорганические пестициды. С хлорорганическими пестицидами он взаимодействует плохо, хотя в больших дозах он может разрушать и эти соединения.

Установлено, что озон, вступая в реакцию с гуминовыми веществами, обычно образует бесцветные соединения. Однако имеются данные, что при изменение рН среды окраска иногда восстанавливается.

В литературе также отмечают, что под действием озона изменяется устойчивость некоторых органических соединений и у них появляется способность задерживаться при фильтровании.

Обобщая приведенные данные относительно действия окислителей на различные виды загрязнений и примеси воды, надо отметить, что метод окисления не может рассматриваться в качестве универсального и санитарно надёжного. Даже такой сильный окислитель, каким является озон, не гарантирует очистку воды от всех видах загрязнений, которые могут встречаться в поверхностных водоисточников. Существенным недостатком окислителей является и то, что они не извлекают загрязнений из воды, а лишь превращают их в другие соединения. При этом могут образовываться продукты, ухудшающие органолептические показатели качества воды (например появляется окраска, возникает запах) и даже являющиеся токсичными. Поэтому окислители можно применять лишь в тех случаях, когда имеется полная уверенность в том, что из воздействие на загрязнения воды не приведёт к образования нежелательных продуктов. Однако и в этом случае могут встретиться затруднения практического использования окислителей, связанные с необходимостью выбора и поддержания их дозы в зависимости от вида и концентрации и обусловленные длительностью проведения многих анализов воды, а следовательно, и невозможностью оперативного контроля за эффектом его очистки.

Очистка воды с использование сорбционного метода

В отличие от окислителей сорбенты не видоизменяются, а извлекают загрязнения воды, поэтому использование их с санитарной точки зрения значительно более надёжно. В литературе имеются сведении о различных видах сорбентов: активных углях, глинах, шлаках и т.д. Эффективность применения сорбентов зависит от их природы, площади удельной поверхности, соотношения микро- и макропор и других факторов, в связи с чем адсорбционная способность сорбентом различна. Такие сорбенты, как, например, зола, шлаки, кокс, бурый уголь, обладает невысокой сорбционной емкостью по отношению к рассмотренным ранее видам загрязнений. Но благодаря своей низкой стоимости они всё же находят применение (главным образом при очистке сточных вод). Использование указанных сорбентов для подготовки питьевой воды неприемлемо вследствие выделения ими очищенную воду нежелательных веществ.

Исследование по применению природных сорбентов (различных глин) для очистки воды были проведены в Москводоканалпроекте. Испытывали монтмориллонитовые глины (гумбрин, асканит, аскаегель), которые добавляли в воду в виде суспензий. Кроме того изучали природные сорбенты (пиролюзит и др) в качестве фильтрующей загрузки. Было установлено, что на указанных материалах происходит сорбция ряда микроэлементов.

По сравнению с природными сорбентами значительно более высокой адсорбционной ёмкостью по отношению к большинству различных химических веществ, особенно органических, обладают активные угли, которые получают всё более широкое применение в технологии очистки воды как за рубежом, так и в нашей стране. Их используют в основном для дезодорации воды и улучшения её вкусовых качеств.

Как известно, активные угли способны сорбировать фенол, и это вещество принято даже в качестве одного из эталонных при оценке углей различных марок. Об эффективности применения активных углей для удаления из воды некоторых видов пестицидов свидетельствуют результаты многочисленных исследований. М. А. Шевченко с сотрудниками указывает, что активные угли хорошо адсорбируют гидрофобные вещества, к числу которых относится большинство хлорорганических пестицидов. Эти же авторы указывают на хороший эффект удаления из воды таких фосфорорганических пестицидов, как фосфомид, карбофос, хлорофос, дихлорофос.

Довольно высокой сорбционной способностью обладают активные угли и по отношению к поверхностно-активным веществам.

В практике водоснабжения активные угли используют как в виде дезорируемого в воду порошка, так и в гранулированном виде в качестве загрузки фильтров.

Углевание воды имеет ряд недостатков:

1). Порошкообразный уголь (так же, как и окислители) требует постоянного подбора дозы его в соответствии с видом и концентрацией загрязнений. Это сравнительно легко выполнимо при удалении привкусов и запахов воды, но при удалении химических загрязнений возникают трудности, связанные со сложностью и длительностью анализа воды. В то же время фильтры с гранулированным углем являются постоянно действующим барьером по отношению к сорбируемым загрязнениям (если ёмкость угля не исчерпана);

2) порошкообразный уголь пылит, и это вызывает большие трудности при его использование.

3) активные угли – весьма дорогостоящие реагенты, поэтому желательно использовать их многократно, применяя регенерацию, которую значительно легче осуществить при использовании гранулированных углей и крайне затруднительно при углевании воды.

Углевание воды. Для наиболее полного использования адсорбционных свойств порошкообразного угля необходимо обеспечить определенное время его контакта с обрабатываемой водой. В зависимости от качества воды, требуемой дозы угля и других факторов порошкообразный уголь водят в различных точках технологической схемы очистки воды: в водоводы 1 подъёма, перед отстойниками или осветлителями со взвешенным осадком, перед фильтровальными сооружениями. Поскольку порошкообразный уголь является дополнительной нагрузкой, ввод его перед фильтровальными сооружениями возможен только при сравнительно небольших дозах.

Методы очистки воды

Существуют несколько методов очистки воды, но все они входят в три группы методов:

— механические методы;

— физико-химические методы;

— биологические методы.

Наиболее дешевая — механическая очистка — применяется для выделения взвесей. Основные методы: процеживание, отстаивание и фильтрование. Применяются, как предварительные этапы.

Химическая очистка применяется для выделения из сточных вод растворимых неорганических примесей.

При обрабботке сточных вод реагентами происходит их нейтрализация, выделение рас-творенных соединений, обесцвечивание и обеззараживание стоков.

Какие существуют способы очистки воды?

Физико-химическая очистка применяется для очистки сточных вод от грубои мелкодисперсионных частиц, коллоидных примесей,растворенных соединений. Высокопроизводительный и в то же время дорогой способ очистки.

Биологические методы применяются для очистки от растворенных органических соединений. Метод основан на способности микроорганизмов разлагать растворенные органические соединения.

В настоящее время из общего количества сточных вод механической очистки подвергается 68% всех стоков, физико-химической3%, биологической — 29%. В перспективе предполагается повысить долю очистки биологическим методом до 80%, что улучшит качество очищаемой воды.

Основным методом повышения качества очистки вредных выбросов предприятиями при рыночной экономике является система штрафов, а также система плат за пользование очистными сооружениями.

Основная задача очистки воды — полностью освободить ее от взвеси (мутности), сделать прозрачной (осветлить) и снизить цветность до незаметного уровня.В современных условиях большое значение имеет предварительное удаление из воды зоопланктона (мельчайших животных организмов) и фитопланктона (мельчайших растительных организмов). Для этого используют микрофильтры и барабанные сетки, через которые производится процеживание воды.

Для осветления и обесцвечивания в комплекс сооружений по очистке воды входят: отстойники, смесители, камеры реакции, фильтры и т.д.

Отстойники (горизонтальные, вертикальные) - сооружения, предназначенные для осаждения под силой тяжести в основном крупных по размеру и массе частиц, находящихся в воде во взвешенном состоянии.

Схема горизонтального отстойника

Недостатком естественного осаждения взвеси в отстойниках является длительность этого процесса, при котором не обеспечивается осаждение основной части мелкой взвеси и всœех коллоидных частиц.

С целью ускорения и повышения эффективности выпадения взвешенных веществ и удаления коллоидных веществ в отстойниках перед отстаиванием производится коагуляция воды.

Схема вертикального отстойника:

1 — подача воды;

2 — отвод воды;

3 — сброс осадка;

4 — камера хлопьеобразования;

5 — кольцевой сборный лоток;

6 — отражательный конус.

Коагуляцией принято называть процесс укрупнения, агрегации коллоидных и тонко диспергированных примесей воды, происходящий вследствие взаимного слипания под действием сил молекулярного притяжения.

Процесс коагуляции завершается образованием видимых невооруженным глазом агрегатов - хлопьев.

Коагуляция происходит под влиянием химических реагентов - коагулянтов, к которым относятся соли алюминия (алюминия сульфат A12(SO4)3,) и желœеза (желœеза сульфат, желœеза хлорид). Для ускорения процесса коагуляции применяют вещества флоккулянты.

Фильтрация - это следующий после коагуляции и отстаивания процесс для освобождения воды от взвешенных веществ, оставшихся после первых этапов очистки.

Сущность фильтрации состоит в пропуске воды через мелкопористый материал, на поверхности, в верхнем слое или в толще которого задерживаются взвешенные частицы.

Фильтр представляет собой желœезобетонный резервуар, заполненный фильтрующим материалом обычно в два слоя.

В качестве фильтрующего материала используют кварцевый песок, антрацитовую крошку, керамзит (дробленый и недробленый), некоторые вулканические шлаки, пенополистирол и другие.

Существует два метода фильтрации воды.

Пленочная фильтрация предполагает образование биологической пленки из ранее задержанных примесей в верхнем слое фильтрующей загрузки. В начале, вследствие механического осаждения частиц взвеси и их прилипания к поверхности загрузочного материала (к примеру песка), уменьшается размер пор.

Пленка достигает толщины 0,5-1 мм и более. Она играет решающую роль в работе медленных фильтров, задерживает мельчайшие взвеси, 95-99 % бактерий, обеспечивает снижение на 20-45 % окисляемости и на 20 % цветности.

2. Объемная фильтрация осуществляется на скорых фильтрах и представляет собой физико-химический процесс, при котором механические примеси воды проникают в толщу фильтрующей загрузки и адсорбируются на поверхности ее частиц и хлопьев коагулянта. В результате уменьшения размеров пор возрастает сопротивление загрузки при фильтровании и потеря напора.

В процессе объёмной фильтрации задерживается около 95 % бактерий. Скорые фильтры, пропуская большее количество воды, быстро засоряются и чаще требуют очистки.

Двухслойный фильтр

Для очистки вод с незначительной мутностью и высоким содержанием органических соединœений, которые плохо поддаются обработке в отстойниках и осветлителях, эффективным методом очистки является флотация.

Флотация - это процесс, сущность которого состоит по сути в том, что коллоидные и дисперсные примеси соединяются с пузырьками воздуха, тонко диспергированного в воде.

Комплексы, которые образуются при этом, всплывают и образуют пену на поверхности флотационного устройства. Снижение поверхностного натяжения на границе вода-воздух приводит к повышению эффективности очистки воды методом флотации.

Очищаем воду для питья: какой способ очистки выбрать?

Для этого в воду добавляют поверхностно-активные вещества (флотореагенты).

В случае организации централизованной подачи питьевой воды в небольшие объекты (посœелки, пансионаты, дома отдыха и т.д.) при использовании в качестве источника водоснабжения поверхностных водоемов для очистки воды могут применяться компактные сооружения небольшой производительности.

В их состав входят: трубчатый отстойник, фильтр с зернистой загрузкой, оборудование для приготовления и дозирования реагентов и бак для промывной воды.

На современных станциях очистки воды в случае использования реагентных технологических схем ввод химических реагентов в обрабатываемую воду осуществляется системами автоматического дозирования.

Οʜᴎ включают емкости реагентов, дозирующие насосы с микропроцессорными регуляторами и впрыскивающие клапаны.

Дозирующий насос химических реагентов с микропроцессорным регулятором и впрыскивающим клапаном

Очистка воды предназначена для доведения всех параметров, характеризующих ее качество, до нормативных показателей. Существенно отлича­ется очистка воды для питьевых нужд, в техноло­гических целях (как из поверхностных водоемов, так и подземных вод) и очистка сточных вод.

Причем далее для промышленных стоков, сбра­сываемых в водоемы или на грунт и сливаемых в систему канализации, нормативы и требования к очистке различные. И они постоянно ужесточа­ются. Считается, что суммарные затраты на очи­стку сточных вод современных предприятий в среднем составляют от 15 до 40 % их общей сто­имости.

Методы очистки воды при всем их многообра­зии можно подразделить на три группы: механи­ческие, физико-химические и биологические.

Механическая очистка применяется, прежде всего, для отделения твердых и взвешенных ве­ществ. Наиболее типичными в этой группе явля­ются способы процеживания, отстаивания, инер­ционного разделения, фильтрования и нефтеулавливания (как разновидность отстаивания).

Процеживание - первичная стадия очистки сточных вод - вода пропускается через специ­альные металлические решетки с шагом 5-25 мм, установленные наклонно. Периодически они очищаются от осадка с помощью специальных по­воротных приспособлений.

Отстаивание происходит в специальных емкос­тях, которые по направлению движения воды делят на горизонтальные, вертикальные, радиальные и ком­бинированные. Общими для них являются выход очищенной воды в верхней части отстойника и гравитационный принцип осаждения частиц, которые собираются внизу. Разновидностью отстойника яв­ляются песколовки, применяющиеся для выделе­ния частиц песка в стоках литейных цехов, окалины - в стоках кузнечно-прессовых и прокатных цехов. Как правило, время нахождения воды в пес­коловках намного меньше, чем в отстойниках, где оно доходит до 1,5 часов (для сточных вод).

Инерционное разделение осуществляется в гид­роциклонах, принцип действия которых аналоги­чен циклонам для очистки газов. Различают откры­тые и напорные гидроциклоны, причем первые имеют большую производительность и малые по­тери напора, но проигрывают в эффективности очистки (особенно от мелких частиц).

Фильтрование осуществляется чаще всего че­рез пористые связанные или несвязанные мате­риалы. Как правило, фильтры очищают воду от тонкодисперсных примесей даже при небольших концентрациях. Фильтроматериалы достаточно разнообразны: кварцевый песок, гравий, антрацит, частички металлов и др. Песчаные фильтры - основные очистители при водоподготовке. Нефтеловушки в самом простом исполнении представляют собой отстойники, в которых вы­ход очищенной воды происходит снизу, а нефтя­ная пленка собирается сверху.

Физико-химическая очистка обеспечивает отделение как твердых и взвешенных частиц, так и растворенных примесей. Она включает множе­ство разных способов, важнейшими из которых являются экстракция, флотация, нейтрализация, окисление, сорбция, коагуляция, ионообменные методы.

Экстракция - процесс разделения примесей в смеси двух нерастворимых жидкостей (экстрагента и сточной воды). Например, в специальных колонках (пустотелых.или заполненных насад­ками) стоки смешиваются с экстрагентом, отбира­ющим вредные вещества: так бензолом удаляет­ся фенол.

Флотация - процесс всплывания примесей (чаще всего маслопродуктов) при обволакивании их пу­зырьками воздуха, подаваемого в сточную воду. В некоторых случаях между пузырьками и приме­сями происходит реакция. Разновидность мето­да - электрофлотация, при которой вода дополни­тельно обеззараживается за счет окислительно-восстановительных процессов у электродов.

Нейтрализация - обработка воды щелочами или кислотами, известью, содой, аммиаком и т. п. с це­лью обеспечения заданной величины водородного показателя рН. Самый простой способ нейтрализа­ции сточных вод - смешение кислых и щелочных стоков, если они имеются на предприятии.

Окисление - применяется как при водоподготовке, так и при обработке сточных вод для обез­зараживания воды и уничтожения токсичных биологических примесей. Наиболее распростра­ненный способ - хлорирование - чреват, как указывалось ранее, появлением диоксинов (осо­бенно при вынужденном повышении дозы хлора летом или в период паводка, так называемом ги­перхлорировании). Необходимо постепенно пере­ходить на другие способы, например, на комбина­цию озонирование и хлорирование. Озо­нирование - дорого и более кратковременного действия, но оно перспективнее. В настоящее время отрабатываются комбинации реагентов с ультра­фиолетовой обработкой воды.

Сорбция, как и при обработке газовых выбросов, способна обеспечивать эффективную очистку воды от солей тяжелых металлов, непредельных угле­водородов, частичек красящих веществ. Лучшим сорбентом и здесь является активиро­ванный уголь, это относится и к различным ми­нералам (шунгиту, цеолиту и др.), специально обработанным опилкам, саже, частичкам титана и др. На этих сорбентах работают многие быто­вые фильтры для воды: «Родничок», «Роса».

Коагуляция - обработка воды специальными реагентами с целью удаления нежелательных растворенных примесей. Широко распростране­на при водоподготовке. Обработка ведется соеди­нениями алюминия или железа, при этом обра­зуются твердые нерастворимые примеси, отделяемые обычными способами. Для сточных вод ши­роко применяется электрокоагуляция, при кото­рой вблизи электродов образуются ионы (резуль­тат анодного растворения материала электродов), реагирующие с примесями. Так отделяют тяже­лые металлы, цианы и др.

Ионообменные методы достаточно эффектив­ны для очистки от многих растворов и даже от тяжелых металлов. Очистка производится син­тетической ионообменной смолой и, если ей пред­шествует механическая очистка, позволяет полу­чить выделенные из воды металлы в виде срав­нительно чистых концентрированных солей.

В последнее время за рубежом (особенно для водоподготовки) используют установки обрат­ного осмоса. В них вода продавливается через набор специальных микропленок при высоком давле­нии (до 30 МПа). Эти установки чрезвычайно эффективны в качестве последних ступеней (т. е. для тонкой очистки). Но они достаточно дороги и энергоемки.

Биологическая очистка возможна в естествен­ных условиях и в искусственных сооружениях. И в том, и в другом случае органические примеси обрабатываются редуцентами (бактериями, про­стейшими, водорослями) и превращаются в минеральные вещества. В естественных усло­виях очистка производится на полях фильтра­ции или орошения (через почву) или в биологи­ческих прудах. Последние могут быть с подду­вом воздуха (с искусственной аэрацией). В качестве искусственных сооружений могут применяться аэротенки, окситенки, метатенки и биофильтры. В тенках (аэро- с подачей воздуха; окси- с пода­чей кислорода; мета- без доступа воздуха) сточ­ные воды обрабатываются микроорганизмами. Но для их нормального функционирования необхо­димы определенные условия по температуре, рН и отсутствию многих солей. Поэтому разновид­ности этих сооружений чаще всего применяются на тех очистных сооружениях канализации, куда не поступают промстоки. На промышленных очи­стных сооружениях чаще применяются биофиль­тры, в которых активная биологическая среда образуется на специальной загрузке (шлак, ке­рамзит, гравий). Эта биологическая среда (пленка) менее чувствительна к колебаниям па­раметров среды и сточных вод. Активность био­пленки увеличивается при поддуве воздуха, пода­ваемого обычно противотоком.

Выбор способов очистки и обеззараживания воды зависит от многих параметров и требований, важ­нейшие из которых: необходимая степень очист­ки и исходная загрязненность воды, потребные расходы и время очистки, наличие очистителей и энергии и, конечно, экономические возможности. Но при всех методах очистки следует обращать внимание на вопрос утилизации осадка, образую­щегося при обработке воды (особенно токсичных промстоков). Как правило, осадок обезво­живается и вывозится на специальные полиго­ны для захоронения. Или обрабатывается в биологических сооружениях. Достаточно эффективны для переработки осадков (в том числе токсичных) некоторые рас­тения типа гиацинтов, тростника. Суще­ствуют специальные печи для сжигания токсич­ных отходов с очень высокой полнотой сгорания (за счет создания взвешенного слоя сгорающего вещества, тангенциальной подачи топлива), и четырехступенчатой очисткой газовых выбросов (печи канадско-американской фирмы профессора Ормстона). Есть и отечественные разработки по сжи­ганию этого осадка в металлургических, специаль­но оборудованных печах с получением сравнительно безвредного строительного материала.

О важности чистой воды для нашего здоровья известно всем. Если мы регулярно будем употреблять воду высокого качества, станет реальной возможность избежать возникновения многих болезней, к ним относятся и довольно тяжелые заболевания. Кроме того, качество воды влияет и на вкус приготовленных на ней блюд. Вы можете приобретать дорогие сорта кофе или чая, однако, готовя их на плохой воде, вся их ценность и вкус будут потеряны безвозвратно.

Хлорированная вода в наших трубах способна защитить нас от опасных вирусов и микробов, однако сама хлорка для нас вредна: разрушает белковые структуры нашего тела, ухудшает состояние слизистых оболочек в организме, убивает полезные бактерии в кишечнике, что способствует , провоцирует появление разнообразных аллергических реакций. Кроме того, хлор не убивает яйца остриц и цисты лямблий.

Думаю, ни для кого уже не является секретом, что вода, которая течет из нашего крана, не обладает тем качеством и чистотой, которые нужны нашему организму. Если у вас стоит фильтр, вам только остается регулярно менять картриджи, чтобы быть уверенными, что вода, которую вы пьете, исключительно полезна. Но, чтобы вы знали, в наших силах в домашних условиях очистить воду, не затрачивая немалые средства на фильтры и картриджи, а используя довольно простые методы.

Способы очищения воды в домашних условиях

  1. Наиболее простым и известным способом очистки воды является ее кипячение . Когда высокая температура действует на воду, происходит ее стерилизация и вода очищается от микроорганизмов (вирусов, микробов) – такой эффект можно получить только при кипячении воды в течение четверти часа, не накрывая крышкой, чтобы с паром удалялись вредные соединения.


  • Но, во-первых, хлорные соединения в такой воде все равно остаются, превращаясь в опасные для здоровья: канцерогенное вещество хлороформ, вызывающий раковые заболевания,
  • во-вторых, части солей оседают на стенках посуды, в которой вы кипятите воду (думаю, их вы видели на стенках вашего чайника), выходит, что при кипячении мы получили мягкую воду, в которой уровень солей, нитратов и тяжелых металлов стал выше, чем в обычной водопроводной,
  • а в-третьих, не зря кипяченую воду называют « », никакой пользы для организма человека она не несет.
  1. Не менее простым методом очистки воды является ее банальное отстаивание . Просто налили в посудину воду, дали ей постоять 8 часов – за это время летучий хлор вместе с другими летучими примесями испарится (хорошо, если будете периодически помешивать воду – это поможет процессам «улетучивания» происходить интенсивнее). Однако соли тяжелых металлов из отстоянной воды никуда не денутся, в лучшем случае они оседают на дно. Потому, когда будете использовать эту воду, выливайте 2/3 ее содержимого, не взбалтывая, чтобы осадок на дне не смешался с более-менее очищенной водой.
  2. Очищение воды можно провести и при помощи обыкновенной поваренной соли . Можете заполнить емкость водой из-под крана (2 литра) и растворите в ней 1ст.л. с верхом соли. Спустя 15-25мин. такая вода будет свободна от вредных микроорганизмов и солей тяжелых металлов.

Минус этого метода в том, что эту воду не стоит употреблять ежедневно.

  1. Заморозка – сегодня это все более популярный метод очищения воды, который, к тому же, считается еще и самым эффективным. В емкость наливается вода (кто использует кастрюлю, кто пластиковые контейнеры, но не используйте стекло), причем не наливайте воду «с верхом», оставьте свободным небольшое пространство, так как жидкость при замерзании способна увеличиваться в объеме.


Чистая пресная вода замерзнет быстрее, чем вода с примесями солей. Потому следите, когда в емкости наполовину вода замерзнет, незамерзшую жидкость вылейте (в ней все вредные примеси), а замороженную воду растопите – ее можно пить и применять для приготовления еды.

Размороженная (талая) вода, выпитая сразу после разморозки, является чрезвычайно целебной, способной ускорить многие восстановительные процессы в организме, увеличить работоспособность, облегчить состояние при аллергии, дерматитах, зуде, .

  1. В аптеке можно приобрести небольшой кусочек кремния и с его помощью очистить воду от примесей. Хорошо промойте кремний в теплой проточной воде, положите его в 2-х литровую банку и налейте холодную воду, прикройте банку марлей и поставьте на свету, но вдали от прямых лучей солнца. Через два-три дня очищенная вода готова. Рассчитывайте величину камешка кремния 3-10г на 1-5 литров воды. И не пейте воду до дна, аккуратно слейте ее в другую посудину, оставив сантиметра 3-5 воды с осадком.
  2. Последнее время популярным становится очистка воды еще одним камнем под названием шунгит . Рекомендуют приобретать крупные камни, тогда они не будут нуждаться в замене на новые, хотя, конечно, раз в полгода их нужно хорошо чистить с помощью щетки, жесткой губки либо наждачной бумаги.

Шунгитовая вода готовится так: 100 граммовый камень помещается в литр воды (если надо больше, то и камень берете не один), 3 дня, не более, шунгит настаивает жидкость, после чего она сливается так же, как и при приготовлении кремниевой воды.


У шунгитовой воды есть противопоказания: склонность к онкологическим заболеваниям, тромбообразованиям, повышенной кислотности и болезнях в стадии обострения.

  1. Если вы не имеете фильтр для очистки воды, вы можете воспользоваться активированным углем . Ведь в основе большинства фильтров применяют именно уголь. Это средство является не только прекрасным нейтрализатором неприятных запахов (старых ржавых труб, к примеру, или хлорки), но и, подобно губке, уголь может впитывать вредные вещества из водопроводной воды.

Просто оберните в марлю таблетки активированного угля (в расчете 1 таблетка на 1 литр воды) и поместите в посудину с водой. Уже следующим утром (спустя 8 часов) у вас будет готова чистая вода.

  1. Об очищающих свойствах серебра мы знаем уже давно. Серебром можно очищать воду, освобождая ее от химических соединений и вредных микробов и вирусов. Просто поместите в емкость с водой на ночь серебряную монету либо ложку. Утром (через 10-12ч.) у вас окажется очищенная вода, готовая к употреблению.

Серебро перегнало по антибактерицидному действию карболовую кислоту и хлорку, причем, свои полезные свойства вода с серебром сохраняет продолжительное время.

  1. Народные средства для очистки воды так же имеют место быть:
  • Очищение гроздью рябины: стоит опустить ее часа на два-три в воду, и вы получите чистую жидкость, соперничающую по качеству с водой, очищенной серебром и активированным углем.
  • Очищение корой ивы, луковой шелухой, ветками можжевельника и листьями черемухи также эффективны и хороши да получения чистой воды, только процесс очистки уже займет 12ч.
  • Очищение уксусом, йодом, вином. На 1л воды пропорции: 1ч.л. уксуса, либо 3 капли 5%-го йода, либо 300г молодого сухого белого вина. Все эти «добавки» помещают в воду на 2-6ч. Минусом является то, что хлор и некоторые микробы в воде все равно остаются.


  1. Многие пытаются восполнить в организме необходимое количество воды дистиллированной водой . Да, в ней вы не обнаружите вредные примеси, но она и пользы никакой не дает организму, кроме того, такая вода не обладает никаким вкусом. Да плюс ко всему, при постоянном употреблении дистиллированной воды из организма вымываются нужные нам минералы и соли.
  2. Еще рассмотрим один метод, как очистить воду в домашних условиях, приобретающий популярность, но и вызывающий некоторые сомнения — очищение магнитами . В посуду наливается обычная вода, вокруг ее обматывают магнитами и оставляют на 3-5 часов. Есть даже рекомендация опоясать водопроводную трубу, подающую в кран воду, магнитами.

Можно быть уверенными, что такой метод не очистит воду от микробов и хлорки, в лучшем случае, примагничит соли железа и очистит воду от этого минерала, и то это можно предположить только теоретически…

Остальные варианты очищения воды: бытовой фильтр в виде кувшина (в нем используют фильтр угольно-кремниевый), способный убрать из воды хлорку и токсичные металлы, при условии, что картриджи вы меняете ежемесячно, различные насадки и, конечно, стационарные фильтры. При их многих достоинствах, у них имеется недостаток — немалая цена. Хотя, конечно, с какой стороны посмотреть, ведь самая ценная инвестиция – в свое собственное здоровье…

А какие методы и способы очистки воды применяете вы?

В реках и других водоемах происходит естественный процесс самоочищения воды. Однако он протекает медленно. Пока промышленно - бытовые сбросы были невелики, реки сами справлялись с ними. В наш индустриальный век в связи с резким увеличением отходов водоемы уже не справляются со столь значительным загрязнением. Возникла необходимость обезвреживать, очищать сточные воды и утилизировать их.

Очистка сточных вод - обработка сточных вод с целью разрушения или удаления из них вредных веществ. Освобождение сточных вод от загрязнения - сложное производство. В нем, как и в любом другом производстве имеется сырье (сточные воды) и готовая продукция (очищенная вода). Очистка сточных вод - вынужденное и дорогостоящее мероприятие, представляющее собой довольно сложную задачу, связанную с большим разнообразием загрязняющих веществ и появлением в их составе новых соединений.

Методы очистки вод можно разделить на 2 большие группы: деструктивные и регенеративные.

В основе деструктивных методов лежат процессы разрушения загрязняющих веществ. Образующиеся продукты распада удаляются из воды в виде газов, осадков или остаются в воде,. но уже в обезвреженном виде.

Регенеративные методы - это не только очистка сточных вод, но и утилизация ценных веществ, образующихся в отходах.

Методы очистки вод можно разделить на: механические, химические, гидрохимические, электрохимические, физико-химические и биологические. Когда же они применяются вместе, то метод очистки и обезвреживания сточных вод называется комбинированным. Применение того или иного метода в каждом конкретном случае определяется характером загрязнения и степенью вредности примеси.

Сущность механического метода состоит в том, что из сточных вод путем отстаивания и фильтрации удаляются механические примеси. Грубодисперсные частицы в зависимости от размеров улавливаются решетками, ситами, песколовками, септиками, навозоуловителями различных конструкций, а поверхностные загрязнения - нефтеловушками, бензомаслоуловителями, отстойниками. Механическая очистка позволяет выделять из бытовых сточных вод до 60-75% нерастворимых примесей, а из промышленных до 95%, многие из которых как ценные примеси, используются в производстве.

Химический метод заключается в том, что в сточные воды добавляют различные химические реагенты, которые вступают в реакцию с загрязнителями и осаждают их в виде нерастворимых осадков. Химической очисткой достигается уменьшение нерастворимых примесей до 95% и растворимых до 25%.

Гидромеханические методы применяют для извлечения из сточных вод нерастворимых грубодисперсных примесей органических и неорганических веществ путем отстаивания, процеживания, фильтрования, центрифугирования. С этой целью используют различные конструктивные модификации сит, решеток, песколовок, отстойников, центрифуг и гидроциклонов.


Электрохимические методы очистки сточных вод от различных растворимых и диспергированных примесей включают анодное окисление и катодное восстановление, электрокоагуляцию, электродиализ. Процессы, лежащие в основе этих методов, протекают при пропускании через сточную воду электрического тока. Под действием электрического поля положительно заряженные ионы мигрируют к катоду, а заряженные отрицательно - к аноду. В прикатодном пространстве происходят процессы восстановления, а в прианодном - процессы окисления.

Физико-химические методы очистки сточных вод многообразны. Это коагуляция, флотация, адсорбционная очистка, ионный обмен, экстракция, обратный осмос и ультрафикация. При физико-химическом методе обработки из сточных вод удаляются тонкодисперсные и растворенные неорганические примеси и разрушаются органические и плохо окисляемые вещества.

Биохимические методы очистки сточных вод. Применяются для очистки хозяйственно-бытовых и промышленных сточных вод от органических и некоторых неорганических (сероводорода, сульфидов, аммиака, нитратов и др.) веществ. Процесс очистки основан на способности микроорганизмов использовать эти вещества для питания, превращения их в воду, диоксид углерода, сульфат-фосфат-ион и др. и увеличивая свою биомассу.

Также к основным методам очистки воды относятся нижеперечисленные методы:

Осветление - удаление из воды взвешенных веществ. Реализуется фильтрацией воды через пористые фильтроэлементы (картриджи) или через слой фильтроматериала. Осветление воды путем осаждения взвешенных веществ. Эту функцию выполняют осветлители, отстойники и фильтры. В осветлителях и отстойниках вода движется с замедленной скоростью, вследствие чего происходит выпадение в осадок взвешенных частиц. В целях осаждения мельчайших коллоидных частиц, которые могут находиться во взвешенном состоянии неопределенно долгое время, к воде прибавляют раствор коагулянта (обычно сернокислый алюминий, железный купорос или хлорное железо). В результате реакции коагулянта с солями многовалентных металлов, содержащимися в воде, образуются хлопья, увлекающие при осаждении взвеси и коллоидные вещества.

Коагуляция - обработка воды специальными химическими реагентами для укрупнения частиц загрязнений. Делает возможными или интенсифицирует осветление, обесцвечивание, обезжелезивание. Коагуляцией примесей воды называют процесс укрупнения мельчайших коллоидных и взвешенных частиц, происходящий вследствие их взаимного слипания под действием сил молекулярного притяжения.

Окисление - обработка воды кислородом воздуха, гипохлоритом натрия, марганцевокислым калием или озоном. Обработка воды окислителем (или их комбинацией) делает возможными или интенсифицирует обесцвечивание, дезодорацию, обеззараживание, обезжелезивание, деманганацию.

Обесцвечивание - удаление или видоизменение веществ, придающих воде цвет. Реализуется различными методами, в зависимости от причины цветности. Обесцвечивание воды, т.е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

Обеззараживание - обработка воды окислителями и/или УФ-излучением для уничтожения микроорганизмов. Обеззараживание воды (удаление бактерий, спор, микробов и вирусов) является заключительным этапом подготовки воды питьевой кондиции. Использование для питья подземной и поверхностной воды в большинстве случаев невозможно без обеззараживания. Обычными методами при очистке воды являются:

  • Хлорирование путем добавления хлора, диоксида хлора, гипохлорита натрия или кальция.
  • Озонирование. При применении озона для подготовки питьевой воды используются окислительные и дезинфицирующие свойства озона.
  • Ультрафиолетовое облучение. Используется энергия ультрафиолетового излучения для уничтожения микробиологических загрязнений. Кишечная палочка, бацилла дизентерии, возбудители холеры и тифа, вирусы гепатита и гриппа, сальмонелла погибают при дозе облучения менее 10 мДж/см2, а ультрафиолетовые стерилизаторы обеспечивают дозу облучения не менее 30 мДж/см2.

Обезжелезивание/деманганация - превращение растворённых соединений железа и марганца, как правило, через специальные фильтро-материалы. Решение проблемы очистки воды от железа представляется довольно сложной и комплексной задачей. К наиболее часто используемым методам можно отнести:

Аэрирование - окисление кислородом воздуха с последующим осаждением и фильтрацией. Расход воздуха для насыщения воды кислородом составляет около 30 л/м3. Это традиционный метод, применяемый уже много десятилетий. Реакция окисления железа требует довольно длительного времени и больших резервуаров, поэтому этот способ используется только на крупных муниципальных системах.

Каталитическое окисление с последующей фильтрацией. Наиболее распространенный на сегодняшний день метод удаления железа, применяемый в высокопроизводительных компактных системах. Суть метода заключается в том, что реакция окисления железа происходит на поверхности гранул специальной фильтрующей среды, обладающей свойствами катализатора (ускорителя химической реакции окисления). Наибольшее распространение в современной водоподготовке нашли фильтрующие среды на основе диоксида марганца (MnO2). Железо в присутствии диоксида марганца быстро окисляется и оседает на поверхности гранул фильтрующей среды. Впоследствии большая часть окисленного железа вымывается в дренаж при обратной промывке. Таким образом, слой гранулированного катализатора является одновременно и фильтрующей средой. Для улучшения процесса окисления в воду могут добавляться дополнительные химические окислители.

Умягчение - замена катионов кальция и магния в воде на эквивалентное количество катионов натрия или водорода. Реализуется фильтрованием воды через специальные ионообменные смолы. С жесткой водой сталкивался каждый, достаточно вспомнить о накипи в чайнике. Жесткая вода не годится при окрашивании тканей водорастворимыми красками, в пивоварении, производстве водки. В ней хуже пенится стиральный порошок и мыло. Высокая жесткость воды делает её непригодной и для питания газовых и электрических паровых котлов и бойлеров. Слой накипи в 1,5 мм снижает теплоотдачу на 15%, а слой толщиной 10 мм - уже на 50%. Снижение теплоотдачи ведет к увеличению расхода топлива или электроэнергии, что, в свою очередь, ведет к образованию прогаров, трещин на трубах и стенках котлов, выводя преждевременно из строя системы отопления и горячего водоснабжения. Наиболее эффективным способом борьбы с высокой жесткостью является применение автоматических фильтров - умягчителей. В основе их работы лежит ионообменный процесс, при котором растворенные в воде жесткие соли заменяются на мягкие, которые не образуют твердых отложений.

Обессоливание - удаление из воды растворённых солей на ионообменных смолах или фильтрование воды через специальные плёнки (мембраны), пропускающие только молекулы воды.

Все большее значение в охране поверхностных вод от загрязнения и засорения приобретают агро- лесо- мелиорация и гидротехнические мероприятия. С их помощью можно предотвращать заиление и зарастание озер, водохранилищ и малых рек. Выполнение этих работ позволит уменьшить загрязненный поверхностный сток и будет способствовать чистоте водоемов.

По данным Всемирной организации здравоохранения (ВОЗ) ежегодно в мире из-за низкого качества воды умирает около 5 млн. человек. Инфекционная заболеваемость населения, связанная с водоснабжением, достигает 500 млн. случаев в год. Это дало основание назвать проблему водоснабжения доброкачественной водой в достаточном количестве проблемой номер один .

В природе вода никогда не встречается в виде химически чистого соединения. Обладая свойствами универсального растворителя, она постоянно несет большое количество различных элементов и соединений, состав и соотношение которых определяется условиями формирования воды, составом водоносных пород. Из грунта атмосферная вода поглощает углекислоту и становиться способной растворять по пути своего движения минеральные соли

Проходя через породы, вода приобретает свойства, характерные для них. Так, при прохождении через известковые породы, вода становится известковой, через доломитовые породы - магниевой. Проходя через каменную соль и гипс, вода насыщается сернокислыми и хлористыми солями и становится минеральной.

После постройки колодца, да и любого другого источника водоснабжения, необходимо провести исследования качества и состава воды для определения пригодности ее к использованию и потреблению. Надо помнить, что хозяйственно-питьевая вода относится к пищевым продуктам и ее показатели должны отвечать согласно Закону РФ "О санитарно-эпидемическом благополучии населения" от 19.04.91года, санитарным правилам СанПиН 4630-88 и требованию ГОСТа 2874-82 "Вода питьевая".

ПДК ДЛЯ ОЗНАКОМЛЕНИЯ (ТАБЛИЦЫ НЕ ЗАУЧИВАТЬ О_о)

ПДК основных неорганических веществ в питьевой воде в различ. странах (мг/дм 3).

Показатели ВОЗ USEPA США ЕС СанПиН Россия СанПиН Украина ГОСТ 2874-82
Алюминий (Al) 0,2 0,2 0,2 0,5 0,2 - 0,5 0,5
Азот аммонийный (NH 3) 1,5 - 0,5 - - -
Асбест (млн. волокон/л) - 7,0 - - - -
Барий (Ва) 0,7 2,0 0,1 0,1 0,1 -
Берилий (Ве) - 0,004 - 0,0002 - 0,0002
Бор (В) 0,3 - 1,0 0,5 - -
Ванадий (V) - - - 0,1 - -
Висмут (Bi) - - - 0,1 - -
Вольфрам (W) - - - 0,05 - -
Европий (Eu) - - - 0,3 - -
Железо (Fe) 0,3 0,3 0,2 0,3 0,3 0,3
Кадмий (Cd) 0,003 0,005 0,005 0,001 отсут. отсут.
Калий (К) - - 12,0 - - -
Кальций (Са) - - 100,0 - - -
Кобальт (Со) - - - 0,1 - -
Кремний (Si) - - - 0,1 - -
Литий (Li) - - - 10,0 - -
Магний (Mg) - - 50,0 0,03 - -
Марганец (Mn) 0,5 0,05 0,05 - 0,1 0,1
Медь (Cu) 1,0÷2,0 1,0÷1,3 2,0 0,1
Молибден (Мо) 0,07 - - 0,25 - 0,5
Мышьяк (As) 0,01 0,05 0,01 0,05 0,001 0,05
Натрий (Na) - - -
Никель (Ni) 0,02 - 0,02 0,1 0,1 -
Ниобий (Nb) - - - 0,01 - -
Нитраты (NO 3)
Нитриты (NO 2) 3,0 3,3 0,5 3,0 отсут. отсут.
Ртуть (Hg) 0,001 0,002 0,001 0,0005 отсут. отсут.
Рубидий (Rb) - - - 0,1 - -
Самарий (Sm) - - - 0,024 - -
Свинец (Pb) 0,01 0,015 0,01 0,03 0,01 0,01
Селен (Se) 0,01 0,05 0,01 0,01 0,01 0,001
Серебро (Ag) - 0,1 0,01 0,05 - 0,05
Сероводород (H 2 S) 0,05 - - 0,03 - -
Стронций (Sr) - - - 17,0 -
Сульфаты (SO 4 2-) 250÷500
Cурьма (Sb) 0,005 0,006 0,005 0,05 - -
Таллий (Ti) - 0,002 - 0,0001 - -
Теллур (Те) - - - 0,01 - -
Фосфор (Р), (РО 4) - - - 0,0001 - 3,5
Фториды (F) 1,5 2,0÷4,0 1,5 1,5 1,5 1,5
Хлор/в т.ч. свободный 0,5÷5,0 - - 0,3÷0,5/0,8÷1,2 0,3÷0,5/0,8÷1,2 -
Хлориды (Cl) 250÷350 -
Хром (Cr 3+) - 0,1 - 0,5 - -
Хром (Cr 6+) 0,05 - 0,05 0,05 отсут. -
Цианиды (СN) 0,07 0,02 0,05 0,035 отсут. -
Цинк (Zn) 3,01 5,0 5,0 5,0 -

* предел по органолептике и потребительским качествам воды.

** в пересчете на нитраты и нитриты соответственно.

Обязательные к соблюдению параметры, установленные основным стандартом США (National Primary Water Drinking Regulations).

Данный параметр установлен так называемым "вторичным стандартом" США (National Secondary Water Drinking Regulations), носящий рекомендательный характер.

питьевой воды ..." 98/93/EC от 1998 г.

Индикаторный параметр, согласно "Директивы по качеству питьевой воды ..." 98/93/EC. От 1998 г.

Обязательный для соблюдения параметр, согласно "Директивы по качеству питьевой воды ..." 80/778/EC от 1980 г.

Рекомендованный уровень согласно EC Drinking Water Directive 80/778/EC от 1980 г. (приводятся только для элементов, для которых не установлена предельно допустимая концентрация - MAC (Maximum Admissible Conentration)). Указаны максимальные значения, допустимые в точке пользования.

UO (Undetectable Organoleptically) - не должен обнаруживаться органолептически (на вкус и запах), согласно "Директивы по качеству питьевой воды ..." 80/778/EC от 1980 г.

ПДК обеззараживающих средств и продуктов обеззараживания (мкг/дм 3).

Показатели ВОЗ USEPA США ЕС СанПиН Россия СанПиН Украина ГОСТ 2874-82
ОБЕЗЗАРАЖИВАЮЩИЕ ВЕЩЕСТВА
Монохлорамин - - - - -
Ди- и трихлорамин - - - - - -
Хлор в том числе остаточный свободный и остаточный - - 300-500 800-1200 300-500 800-1200 -
Диоксид хлора - - - - - -
Иод - - - - - -
Озон остаточный - - - -
ПОБОЧНЫЕ ПРОДУКТЫ ОБЕЗЗАРАЖИВАНИЯ
Броматы - - - - -
Хлорат - - - - -
Хлорит - - - -
Полиакриламид - - - -
Активированная кремниевая кислота (по Si) - - - - -
Полифосфаты - - - -
Хлорфенолы - - - - - -
2-хлорфенол - - - - -
1,2,4-хлорфенол - - - - -
2,4,6-хлорфенол - * - -
Формальдегид - - - -
Монохлорамин - - - - - -
Тригалометаны - - -
Бромформ - - - -
Дибромхлорметан - - - -
Бромдихлорметан - - - - -
Хлороформ - - -
Хлорированные уксусные кислоты - - - - - -
Монохлоруксусная кислота - - - - -
Дихлоруксусная кислота - - - - -
Трихлоруксусная кислота - - - -
Трихлорацетальдегид (хлоргидраты) - - - -
Хлорацетон - - - - - -
Галогенированные ацетонитрилы - - - - - -
Дихлорацетонитрил - - - - -
Дибромацетонитрил - - - - -
Бромхлорацетонитрил - - - - -
Хлорциан - - - - -
Хлорпикрин - - - - - -

Прочерк означает, что данный параметр не нормируется

ВОЗ - Всемирная Организация Здравохранения, USEPA (US Environment Protection Agency) - Агенство по охране окружающей среды США, ЕС - Европейское Сообщество, СанПиН - Россия - Госкомсанэпидемнадзор России, СанПиН Украина - Министерство Здравохранения Украины.