Схема всеядный импульсный стабилизатор напряжения. Простой импульсный стабилизатор

Регулируемый импульсный стабилизатор напряжения предназначен как для установки в радиолюбительские устройства с фиксированным выходным напряжением, так для лабораторного блока питания с регулируемым выходным напряжением. Так как стабилизатор работает в импульсном режиме, он имеет высокий КПД и в отличие от линейных стабилизаторов не нуждается в большом теплоотводе. Модуль выполнен на плате с алюминиевой подложкой, что позволяет в течение продолжительного времени снимать выходной ток до 2 А без установки дополнительного теплоотвода. Для токов более 2 А к тыльной стороне модуля необходимо прикрепить радиатор площадью не менее 145 кв.см. Радиатор может быть прикреплен винтами, для этого в модуле предусмотрены два отверстия, для максимальной теплопередачи используйте пасту КПТ-8. В случае невозможности использовать крепежные винты, модуль может быть прикреплен к радиатору/металлической части устройства с использованием автогерметика. Для этого нужно нанести герметик в центр тыльной части модуля, притереть поверхности таким образом, чтобы зазор между ними был минимален и прижать на 24 часа. Устройство имеет тепловую защиту и ограничение по выходному току от 3 до 4 А. Выходное напряжение не может превышать напряжение на входе. Для того чтобы начать эксплуатировать стабилизатор необходимо припаять переменный резистор от 47 до 68 Ком к контактам на плате R1. Переменный резистор не следует подключать на длинных проводах. Для установки в устройства с фиксированным выходным напряжением на место R1 нужно установить постоянный резистор, используя формулу R1=1210(Uвых/1.23-1), где Uвых - требуемое выходное напряжение. Модуль может работать в режиме стабилизатора тока, для этого вместо R2 нужно установить внешний резистор, рассчитываемый по формуле R=1,23/I, где I - требуемый выходной ток. Резистор должен быть соответствующей мощности. При питании модуля от понижающего трансформатора и диодного моста, на выход диодного моста необходимо установить фильтрующий конденсатор не менее 2200 мкФ. Технические характеристики Параметр Значение Входное напряжение, не более 40 В Выходное напряжение 1,2..37 В Выходной ток во всем диапазоне напряжений, не более 3 А Ограничение выходного тока 3..4 А Частота преобразования 150 КГц Температура модуля без радиатора при tокр = 25° С, Uвх = 25 В, Uвых = 12 В при вых. токе 0,5 А 36° С при вых. токе 1 А 47° С при вых. токе 2 А 65° С при вых. токе 3 А 115° С КПД при Uвх = 25 В, Uвых = 12 В, Iвых = 3А 90% Диапазон рабочих температур -40..85° С Защита от переполюсовки нет Размеры модуля 43 х 40 х 12 мм Вес модуля 15 г Схема включения с вольтметром SVH0043 Схема включения стабилизатором тока 1,6 А Габаритные размеры


Источники питания
[Содержание номера ] [Содержание года ] [Архив ] [Статьи ]
Простой импульсный стабилизатор

С.Засухин, г.Санкт-Петербург

Преимущества импульсных стабилизаторов постоянного напряжения известны: высокий КПД и устойчивая работоспособность при большой разнице значений входного и выходного напряжений. В "Радио" уже публиковались описания таких стабилизаторов, но они либо не имеют защиты от замыкания в нагрузке , либо очень сложны . Предлагаемый стабилизатор с широтно-импульсным управлением (рис.1) по принципу действия близок к стабилизатору, описанному в , но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или превышении тока, потребляемого нагрузкой.

Рис.1

При подаче питания на вход устройства ток, текущий через резистор R2, открывает ключевой элемент, образованный транзисторами VT2, VT3, в результате чего в цепи транзистор VT3 - дроссель L1 - нагрузка - резистор R6 возникает ток. Происходит зарядка конденсатора C4 и накопление энергии дросселем L1. Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 В и открывается стабилитрон VD4. Это приводит к открыванию транзисторов VT5, VT1 и закрыванию ключевого элемента, а благодаря наличию диода VD1, дроссель L1 отдает накопленную энергию нагрузке.

По мере уменьшения тока через дроссель и разрядки конденсатора C4 напряжение на нагрузке уменьшится, что приводит к закрыванию транзисторов VT5, VT1 и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор CЗ, снижающий частоту колебательного процесса, повышает КПД стабилизатора.

Более подробно о работе такого стабилизатора рассказано в .

При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R6, открыванию транзистора VT4 и закрыванию ключевого элемента. Далее процесс протекает аналогично описанному выше. Диоды VD2 и VD3 способствуют более резкому переходу устройства из режима стабилизации напряжения в режим ограничения тока, потребляемого нагрузкой.

Нагрузочная характеристика стабилизатора приведена на рис.2. На участке а-б устройство работает как стабилизатор напряжения, на участке б-в - как стабилизатор тока. На участке в-г выходной ток с уменьшением сопротивления нагрузки хотя и растет, но даже в режиме короткого замыкания (точка г) он безопасен для деталей стабилизатора.

Рис.2

Интересно отметить: во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки.

Стабилизатор выполнен на печатной плате из одностороннего фольгированного стеклотекстолита (рис.3). Резисторы - МЛТ и С5-16Т (R6). Оксидный конденсатор C4 составлен из двух конденсаторов К50-6 емкостью по 500 мкф каждый; конденсаторы C2 и CЗ - К10-7В. Диод КД226А (VD1) заменим на КД213; VD2 и VD3 могут быть любыми импульсными. Транзисторы VT1, VT4, VT5 - любые маломощные соответствующих структур с Uкэ max > Uвх . Транзистор VT2 (с некоторым ухудшением КПД) может быть любым из серии КТ814, VT3 - любым мощным структуры N-P-N в пластмассовом корпусе, который следует установить на теплоотводе размерами 40х25 мм из алюминиевого сплава.

Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМ3. Магнитопровод собран с зазором толщиной 0,5 мм из немагнитного материала.

Безошибочно смонтированный стабилизатор налаживания не требует.

Стабилизатор несложно перестроить на другое выходное напряжение и ток, потребляемый нагрузкой. Необходимое выходное напряжение устанавливают выбором соответствующего стабилитрона VD4, а максимальный ток нагрузки - пропорциональным изменением сопротивления резистора R6 или подачей на базу транзистора VT4 небольшого тока от отдельного параметрического стабилитрона через переменный резистор.

Участок б-в на нагрузочной характеристике позволяет использовать устройство для зарядки аккумуляторных батарей стабильным током. При этом, правда, КПД стабилизатора падает, и если предполагается длительная работа на этом участке нагрузочной характеристики, то транзистор VT3 придется установить на более эффективный теплоотвод. Иначе допустимый выходной ток придется уменьшить.

Для снижения уровня пульсации выходного напряжения целесообразно использовать LC-фильтр, аналогичный примененному в .

Мною смакетирован аналогичный стабилизатор на напряжение 18 В при токе нагрузки, регулируемом от 1 до 5 А. Такое устройство можно использовать, например, для зарядки автомобильных аккумуляторных батарей, если предусмотреть защиту от их переполюсовки. Его транзисторы VT1 и VT2 - КТ914А, VT3 - КТ935А, VT4 и VT5 - КТ645А; диод VD1 - КД213; VD4 - два последовательно включенных стабилитрона Д814А. Конденсатор C4 - два оксидных емкостью по 500 мкф на номинальное напряжение 25 В. Дроссель L1 - 12 витков жгута из шести проводов ПЭВ-2 0,57 в магнитопроводе Б36 из феррита 1500НМ3 с зазором 0,5 мм. Резистор R6 - проволочный сопротивлением 0,05 Ом. Транзистор VT3 и диод VD1 установлены на общем теплоотводе с поверхностью 300 см² через слюдяные прокладки.

Для питания такого зарядного устройства использовался трансформатор ТН54 с соединенными последовательно обмотками. Мостовой выпрямитель на диодах Д242 с фильтрующим конденсатором емкостью 10 000 мкф на номинальное напряжение 50 В.

LM2596 понижает входное (до 40 В) напряжение - выходное регулируется, ток 3 А. Идеален для светодиодов в машине. Очень дешёвые модули - около 40 рублей в Китае.

Компания Texas Instruments выпускает качественные, надежные, доступные и дешёвые, удобные в применении DC-DC контроллеры LM2596. Китайские заводы выпускают на её основе сверхдешёвые импульсные понижающие (stepdown) конвертеры: цена модуля на LM2596 примерно 35 рублей (вместе с доставкой). Я советую купить сразу партию в 10 штук - для них всегда найдётся применение, при этом цена опустится до 32 рублей, и меньше 30 рублей при заказе 50 штук. Подробнее о расчёте обвязки микросхемы, регулировке тока и напряжения, его применении и о некоторых минусах конвертера.

Типичный метод использования - стабилизированный источник напряжения. На основе этого стабилизатора легко сделать импульсный блок питания, я применяю её как простой и надёжный лабораторный блок питания, выдерживающий короткое замыкание. Они привлекательны постоянством качества (похоже, все они делаются на одном заводе - да и сложно сделать ошибки в пяти деталях), и полным соответствием даташиту и заявленным характеристикам.

Другая область применения - импульсный стабилизатор тока для питания мощных светодиодов . Модуль на этой микросхеме позволит вам подключить автомобильную светодиодную матрицу на 10 Ватт, дополнительно обеспечив защиту от КЗ.

Крайне рекомендую купить их десяток штук - обязательно пригодятся. Они по–своему уникальны - входное напряжение вплоть до 40 вольт, и требуется лишь 5 внешних компонентов. Это удобно - можно поднять напряжение на шине электропитания умного дома до 36 вольт, уменьшив сечение кабелей. В точках потребления ставим такой модуль и настраиваем его на нужные 12, 9, 5 вольт или сколько понадобится.

Рассмотрим их подробнее.

Характеристики микросхемы:

  • Входное напряжение - от 2.4 до 40 вольт (до 60 вольт в версии HV)
  • Выходное напряжение - фиксированное либо регулируемое (от 1.2 до 37 вольт)
  • Выходной ток - до 3 ампер (при хорошем охлаждении - до 4.5А)
  • Частота преобразования - 150кГц
  • Корпус - TO220-5 (монтаж в отверстия) либо D2PAK-5 (поверхностный монтаж)
  • КПД - 70-75% на низких напряжениях, до 95% на высоких
  1. Источник стабилизированного напряжения
  2. Схема преобразователя
  3. Даташит
  4. USB-зарядник на основе LM2596
  5. Стабилизатор тока
  6. Применение в самодельных устройствах
  7. Регулировка выходного тока и напряжения
  8. Улучшенные аналоги LM2596

История - линейные стабилизаторы

Для начала, объясню чем плохи стандартные линейные преобразователи напряжения вроде LM78XX (например 7805) или LM317. Вот его упрощённая схема.

Главный элемент такого преобразователя - мощный биполярный транзистор, включенный в своём «исконном» значении - как управляемый резистор. Этот транзистор входит в состав пары Дарлингтона (для увеличения коэффициента передачи по току и снижения мощности, необходимой на работу схемы). Базовый ток задаётся операционным усилителем, который усиливает разность между выходным напряжением и заданным с помощью ИОН (источник опорного напряжения), т.е. он включен по классической схеме усилителя ошибки.

Таким образом, преобразователь просто включает резистор последовательно с нагрузкой, и управляет его сопротивлением чтобы на нагрузке гасилось, к примеру, ровно 5 вольт. Нетрудно посчитать что при понижении напряжения с 12 вольт до 5 (очень частый случай применения микросхемы 7805) входные 12 вольт распределяются между стабилизатором и нагрузкой в отношении «7 вольт на стабилизаторе + 5 вольт на нагрузке». На токе в полампера на нагрузке выделяется 2.5 ватта, а на 7805 - целых 3.5 ватта.

Получается что «лишние» 7 вольт просто гасятся на стабилизаторе, превращаясь в тепло. Во-первых, из-за этого возникают проблемы с охлаждением, а во-вторых на это уходит много энергии из источника питания. При питании от розетки это не очень страшно (хотя всё равно наносится вред экологии), а при батарейном или аккумуляторном питании об этом нельзя не помнить.

Другая проблема - таким методом вообще невозможно сделать повышающий преобразователь. Часто такая потребность возникает, и попытки решить этот вопрос двадцать-тридцать лет назад поражают - насколько сложен был синтез и расчёт таких схем. Одна из простейших схем такого рода - двухтактный преобразователь 5В->15В.

Нужно признать, что он обеспечивает гальваническую развязку, однако он неэффективно использует трансформатор - каждый момент времени задействована лишь половина первичной обмотки.

Забудем это как страшный сон и перейдём к современной схемотехнике.

Источник напряжения

Схема

Микросхема удобна в применении в качестве step–down конвертера: мощный биполярный ключ находится внутри, осталось добавить остальные компоненты регулятора - быстрый диод, индуктивность и выходной конденсатор, также возможно поставить входной конденсатор - всего 5 деталей.

В версии LM2596ADJ также потребуется схема задания выходного напряжения, это два резистора или один переменный резистор.

Схема понижающего преобразователя напряжения на основе LM2596:

Вся схема вместе:

Здесь можно скачать даташит/datasheet на LM2596 .

Принцип работы: управляемый ШИМ–сигналом мощный ключ внутри устройства посылает импульсы напряжения на индуктивность. В точке А x% времени присутствует полное напряжение, и (1–x)% времени напряжение равно нулю. LC–фильтр сглаживает эти колебания, выделяя постоянную составляющую, равную x * напряжение питания. Диод замыкает цепь, когда транзистор выключен.

Подробное описание работы

Индуктивность противится изменению тока через неё. При появлении напряжения в точке А дроссель создаёт большое отрицательное напряжение самоиндукции, и напряжение на нагрузке становится равно разности напряжения питания и напряжения самоиндукции. Ток индуктивности и напряжение на нагрузке постепенно растут.

После пропадания напряжения в точке А дроссель стремится сохранить прежний ток, текущий из нагрузки и конденсатора, и замыкает его через диод на землю - он постепенно падает. Таким образом, напряжение на нагрузке всегда меньше входного напряжения и зависит от скважности импульсов.

Выходное напряжение

Модуль выпускается в четырёх версиях: с напряжением 3.3В (индекс –3.3), 5В (индекс –5.0), 12В (индекс –12) и регулируемая версия LM2596ADJ. Имеет смысл везде применять именно настраиваемую версию, поскольку она в большом количестве есть на складах электронных компаний и вы вряд ли столкнётесь с её дефицитом - а она требует дополнительно лишь два копеечных резистора. Ну и конечно, версия на 5 вольт тоже пользуется популярностью.

Количество на складе - в последнем столбце.

Можно сделать задание выходного напряжения в виде DIP-переключателя, хороший пример этого приведён здесь, либо в виде поворотного переключателя. В обоих случаях потребуется батарея точных резисторов - зато можно настраивать напряжение без вольтметра.

Корпус

Существует два варианта корпусов: корпус для планарного монтажа TO–263 (модель LM2596S) и корпус для монтажа в отверстия TO–220 (модель LM2596T). Я предпочитаю применять планарную версию LM2596S, поскольку в этом случае радиатором является сама плата, и отпадает необходимость покупать дополнительный внешний радиатор. К тому же её механическая стойкость гораздо выше, в отличие от TO-220, которую обязательно надо к чему–то привинчивать, хотя бы даже к плате - но тогда проще установить планарную версию. Микросхему LM2596T-ADJ я рекомендую использовать в блоках питания, потому что с её корпуса легче отвести большое количество тепла.

Сглаживание пульсаций входного напряжения

Можно использовать как эффективный «интеллектуальный» стабилизатор после выпрямления тока. Поскольку микросхема следит непосредственно за величиной выходного напряжения, колебания входного напряжения вызовут обратно пропорциональное изменение коэффициента преобразования микросхемы, и выходное напряжение останется в норме.

Из этого следует, что при использовании LM2596 в качестве понижающего преобразователя после трансформатора и выпрямителя, входной конденсатор (т.е. тот который стоит сразу после диодного моста) может иметь небольшую ёмкость (порядка 50-100мкФ).

Выходной конденсатор

Благодаря высокой частоте преобразования выходной конденсатор тоже не обязан иметь большую ёмкость. Даже мощный потребитель не успеет значительно посадить этот конденсатор за один цикл. Проведём расчёт: возьмём конденсатор в 100мкФ, 5В выходного напряжения и нагрузку, потребляющую 3 ампера. Полный заряд конденсатора q = C*U = 100e-6 мкФ * 5 В = 500e-6 мкКл.

За один цикл преобразования нагрузка заберёт из конденсатора dq = I*t = 3 А * 6.7 мкс = 20 мкКл (это всего 4% от полного заряда конденсатора), и тут же начнётся новый цикл, и преобразователь засунет в конденсатор новую порцию энергии.

Самое главное - не используйте в качестве входного и выходного конденсатора танталовые конденсаторы. У них прямо в даташитах пишут - «не использовать в цепях питания», потому что они очень плохо переносят даже кратковременные превышения напряжения, и не любят высокие импульсные токи. Используйте обычные алюминиевые электролитические конденсаторы.

Эффективность, КПД и тепловые потери

КПД не так высок, поскольку в качестве мощного ключа используется биполярный транзистор - а он имеет ненулевое падение напряжения, порядка 1.2В. Отсюда и падение эффективности при маленьких напряжениях.

Как видим, максимальная эффективность достигается при разности входного и выходного напряжений порядка 12 вольт. То есть, если нужно уменьшить напряжение на 12 вольт - в тепло уйдёт минимальное количество энергии.

Что такое эффективность преобразователя? Это величина, характеризующая токовые потери - на выделение тепла на полностью открытом мощном ключе по закону Джоуля-Ленца и на аналогичные потери при переходных процессах - когда ключ открыт, допустим, лишь наполовину. Эффекты от обоих механизмов могут быть сравнимы по величине, поэтому не нужно забывать про оба пути потерь. Небольшая мощность идёт также на питание самих «мозгов» преобразователя.

В идеальном случае, при преобразовании напряжения с U1 до U2 и выходном токе I2 выходная мощность равна P2 = U2*I2, входная мощность равна ей (идельный случай). Значит, входной ток составит I1 = U2/U1*I2.

В нашем же случае преобразование имеет эффективность ниже единицы, поэтому часть энергии останется внутри прибора. Например, при эффективности η выходная мощность составит P_out = η*P_in, а потери P_loss = P_in-P_out = P_in*(1-η) = P_out*(1-η)/η. Конечно, преобразователь вынужден будет увеличить входной ток, чтобы поддерживать заданные выходные ток и напряжение.

Можно считать, что при преобразовании 12В -> 5В и выходном токе 1А потери в микросхеме составят 1.3 ватта, а входной ток будет равен 0.52А. В любом случае это лучше любого линейного преобразователя, который даст минимум 7 ватт потерь, и потребит из входной сети (в том числе на это бесполезное дело) 1 ампер - в два раза больше.

Кстати, микросхема LM2577 имеет в три раза меньшую частоту работы, и её эффективность несколько выше, поскольку меньше потерь в переходных процессах. Однако, ей нужны в три раза более высокие номиналы дросселя и выходного конденсатора, а это лишние деньги и размер платы.

Увеличение выходного тока

Несмотря на и так довольно большой выходной ток микросхемы, иногда требуется ещё бОльший ток. Как выйти из этой ситуации?

  1. Можно запараллелить несколько преобразователей. Конечно, они должны быть настроены точно на одно и то же выходное напряжение. В таком случае нельзя обойтись простыми SMD-резисторами в цепи задания напряжения Feedback, нужно использовать либо резисторы с точностью 1%, либо вручную задавать напряжение переменным резистором.
Если нет уверенности в маленьком разбросе напряжений — лучше параллелить преобразователи через небольшой шунт, порядка нескольких десятков миллиом. Иначе вся нагрузка ляжет на плечи преобразователя с самым высоким напряжением и он может не справиться. 2. Можно использовать хорошее охлаждение — большой радиатор, многослойная печатная плата большой площади. Это даст возможность [поднять ток](/lm2596-tips-and-tricks/ "Применение LM2596 в устройствах и разводка платы") до 4.5А. 3. Наконец, можно [вынести мощный ключ](#a7) за пределы корпуса микросхемы. Это даст возможность применить полевой транзистор с очень маленьким падением напряжения, и здорово увеличит как выходной ток, так и КПД.

USB-зарядник на LM2596

Можно сделать очень удобный походный USB-зарядник. Для этого необходимо настроить регулятор на напряжение 5В, снабдить его USB-портом и обеспечить питание зарядника. Я использую купленный в Китае радиомодельный литий-полимерный аккумулятор, обеспечивающий 5 ампер-часов при напряжении 11.1 вольта. Это очень много - достаточно для того чтобы 8 раз зарядить обычный смартфон (не учитывая КПД). С учётом КПД получится не меньше 6 раз.

Не забудьте замкнуть контакты D+ и D- гнезда USB, чтобы сообщить телефону что он подключен к заряднику, и передаваемый ток неограничен. Без этого мероприятия телефон будет думать, что он подключен к компьютеру, и будет заряжаться током в 500мА - очень долго. Более того, такой ток может даже не скомпенсировать ток потребления телефона, и аккумулятор вовсе не будет заряжаться.

Также можно предусмотреть отдельный вход 12В от автомобильного аккумулятора с разъёмом прикуривателя - и переключать источники каким-либо переключателем. Советую установить светодиод, который будет сигнализировать что устройство включено, чтобы не забыть выключить батарею после полной зарядки - иначе потери в преобразователе полностью посадят резервную батарею за несколько дней.

Такой аккумулятор не слишком подходит, потому что он рассчитан на высокие токи - можно попробовать найти менее сильноточную батарею, и она будет иметь меньшие размеры и вес.

Стабилизатор тока

Регулировка выходного тока

Возможна только в версии с настраиваемым выходным напряжением (LM2596ADJ). Кстати, китайцы делают и такую версию платы, с регулировкой напряжения, тока и всевозможной индикацией - готовый модуль стабилизатора тока на LM2596 с защитой от КЗ, можно купить под названием xw026fr4.

Если вы не хотите применять готовый модуль, и желаете сделать эту схему самостоятельно - ничего сложного, за одним исключением: у микросхемы нет возможности управления током, однако её можно добавить. Я объясню, как это сделать, и попутно разъясню сложные моменты.

Применение

Стабилизатор тока - штука, нужная для питания мощных светодиодов (кстати - мой проект микроконтроллерного драйвера мощного светодиода ), лазерных диодов, гальваники, заряда аккумуляторов. Как и в случае со стабилизаторами напряжения, есть два типа таких устройств - линейный и импульсный.

Классический линейный стабилизатор тока - это LM317, и он вполне хорош в своём классе - но его предельный ток 1.5А, для многих мощных светодиодов этого недостаточно. Даже если умощнить этот стабилизатор внешним транзистором - потери на нём просто неприемлемы. Весь мир катит бочку на энергопотребление лампочек дежурного питания, а тут LM317 работает с КПД 30% Это не наш метод.

А вот наша микросхема - удобный драйвер импульсного преобразователя напряжения, имеющий много режимов работы. Потери минимальны, поскольку не применяется никаких линейных режимов работы транзисторов, только ключевые.

Изначально она предназначалась для схем стабилизации напряжения, однако несколько элементов превращают её в стабилизатор тока. Дело в том, что микросхема всецело полагается на сигнал «Feedback» в качестве обратной связи, а вот что на него подавать - это уже наше дело.

В стандартной схеме включения на эту ногу подаётся напряжение с резистивного делителя выходного напряжения. 1.2В - это равновесие, если Feedback меньше - драйвер увеличивает скважность импульсов, если больше - уменьшает. Но ведь можно на этот вход подать напряжение с токового шунта!

Шунт

Например, на токе 3А нужно взять шунт номиналом не более 0.1Ом. На таком сопротивлении этот ток выделит около 1Вт, так что и это много. Лучше запараллелить три таких шунта, получив сопротивление 0.033Ом, падение напряжения 0.1В и выделение тепла 0.3Вт.

Однако, вход Feedback требует напряжение 1.2В - а мы имеем лишь 0.1В. Ставить бОльшее сопротивление нерационально (тепла будет выделяться в 150 раз больше), поэтому остаётся как-то увеличить это напряжение. Делается это с помощью операционного усилителя.

Неинвертирующий усилитель на ОУ

Классическая схема, что может быть проще?

Объединяем

Теперь объединяем обычную схему преобразователя напряжения и усилитель на ОУ LM358, к входу которого подключаем токовый шунт.

Мощный резистор 0.033 Ом - это и есть шунт. Его можно сделать из трёх резисторов 0.1 Ом, соединённых параллельно, а для увеличения допустимой рассеиваемой мощности - используйте SMD-резисторы в корпусе 1206, поставьте их с небольшим промежутком (не вплотную) и постарайтесь максимально оставить слой меди вокруг резисторов и под ними. На выход Feedback подключен небольшой конденсатор, чтобы устранить возможный переход в режим генератора.

Регулируем и ток и напряжение

Давайте заведём на вход Feedback оба сигнала - и ток, и напряжение. Для объединения этих сигналов воспользуемся обычной схемой монтажного «И» на диодах. Если сигнал тока выше сигнала напряжения - он будет доминировать и наоборот.

Пару слов о применимости схемы

Вы не можете регулировать выходное напряжение. Хотя невозможно регулировать одновременно и выходной ток, и напряжение - они пропорциональны друг другу, с коэффициентом «сопротивление нагрузки». А если блок питания реализует сценарий вроде «постоянное выходное напряжение, но при превышении тока начинаем уменьшать напряжение», т.е. CC/CV - то это уже зарядное устройство.

Максимальное напряжение питания схемы - 30В, поскольку это предел для LM358. Можно расширить этот предел до 40В (или 60В с версией LM2596-HV), если питать ОУ от стабилитрона.

В последнем варианте в качестве суммирующих диодов необходимо использовать диодную сборку, поскольку в ней оба диода сделаны в рамках одного технологического процесса и на одной пластине кремния. Разброс их параметров будет гораздо меньше разброса параметров отдельных дискретных диодов - благодаря этому мы получим высокую точность отслеживания значений.

Также нужно внимательно следить за тем, чтобы схема на ОУ не возбудилась и не перешла в режим генерации. Для этого старайтесь уменьшить длину всех проводников, а особенно дорожки, подключенной к 2 выводу LM2596. Не располагайте ОУ вблизи этой дорожки, а диод SS36 и конденсатор фильтра расположите ближе к корпусу LM2596, и обеспечьте минимальную площадь петли земли, подключенной к этим элементам - необходимо обеспечить минимальную длину пути возвратного тока «LM2596 -> VD/C -> LM2596″.

Применение LM2596 в устройствах и самостоятельная разводка платы

О применении микросхемы в своих устройствах не в виде готового модуля я подробно рассказал в другой статье , в которой рассмотрены: выбор диода, конденсаторов, параметров дросселя, а также рассказал про правильную разводку и несколько дополнительных хитростей.

Возможности дальнейшего развития

Улучшенные аналоги LM2596

Проще всего после этой микросхемы перейти на LM2678 . По сути - это тот же самый stepdown преобразователь, только с полевым транзистором, благодаря которому КПД поднимается до 92%. Правда, у него 7 ног вместо 5, и он не pin-to-pin совместимый. Тем не менее эта микросхема очень похожа, и будет простым и удобным вариантом с улучшенной эффективностью.

L5973D – довольно старая микросхема, обеспечивающая до 2.5А, и немного более высокий КПД. Также у неё почти в два раза выше частота преобразования (250 кГц) - следовательно, требуются меньшие номиналы индуктивности и конденсатора. Однако, я видел что с ней происходит, если поставить её напрямую в автомобильную сеть - довольно часто выбивает помехами.

ST1S10 - высокоэффективный (КПД 90%) DC–DC stepdown преобразователь.

  • Требует 5–6 внешних компонентов;

ST1S14 - высоковольтный (до 48 вольт) контроллер. Большая частота работы (850 кГц), выходной ток до 4А, выход Power Good, высокий КПД (не хуже 85%) и схема защиты от превышения тока нагрузки делают его, наверное, лучшим преобразователем для питания сервера от 36–вольтового источника.

Если требуется максимальный КПД - придётся обращаться к неинтегрированным stepdown DC–DC контроллерам. Проблема интегрированных контроллеров в том, что в них никогда не бывает классных силовых транзисторов - типичное сопротивление канала не выше 200мОм. Однако если взять контроллер без встроенного транзистора - можно выбрать любой транзистор, хоть AUIRFS8409–7P с сопротивлением канала в пол–миллиома

DC-DC преобразователи с внешним транзистором

Следующая часть

За последние 10-20 лет количество бытовой электроники многократно выросло. Появилось огромное разнообразие электронных компонентов и готовых модулей. Возросли и требования к питанию, для многих требуется стабилизированное напряжение или стабильный ток.

Драйвер чаще всего используется как стабилизатор тока для светодиодов и зарядки автомобильных аккумуляторов. Такой источник теперь есть в каждой светодиодном прожекторе, лампе или светильнике. Рассмотрим все варианты стабилизации, начиная от старых и простых до самых эффективных и современных. Еще они называются , led driver.


  • 1. Типы стабилизаторов
  • 2. Популярные модели
  • 3. Стабилизатор для светодиодов
  • 4. Драйвер на 220 В
  • 5. Стабилизатор тока, схема
  • 6. LM317
  • 7. Регулируемый стабилизатор тока
  • 8. Цены в Китае

Типы стабилизаторов

Импульсные регулируемые постоянного тока

15 лет назад на первом курсе я сдавал зачёты по предмету «Источники питания» для радиоэлектронной аппаратуры. Начиная с тех пор и до сегодняшнего времени, самым народным и популярным остаётся микросхема LM317 и её аналоги, которая относится к классу линейных стабилизаторов.

На данный момент есть несколько видов стабилизаторов напряжения и тока:

  1. линейные до 10А и входным напряжением до 40В;
  2. импульсные с высоким входным напряжением, понижающие;
  3. импульсные с низким входным напряжением, повышающие.

На импульсном ШИМ контроллере обычно от 3 до 7 ампер по характеристикам. В реальности зависит от системы охлаждения и КПД в конкретном режиме. Повышающий из низкого входного напряжения на выходе делает более высокое. Такой вариант используется для от блоков питания с малым количеством вольт. Например в автомобиле, когда из 12В надо сделать 19В или 45В. С понижающим проще, высокое снижается до нужного уровня.

Про все способы питания светодиодов читайте в статье « к 12 и 220В». Отдельно описаны схемы подключения от простейших за 20 руб до полноценных блоков с хорошим функционалом.

По функционалу они делятся на специализированные и универсальные. Универсальные модули обычно имеют 2 переменных сопротивления, для настройки Вольт и Ампер на выходе. Специализированные чаще всего не имеют построечных элементов и значения на выходе фиксированы. Среди специализированных, распространены стабилизаторы тока для светодиодов, схемы в большом количестве есть в интернете.

Популярные модели

Lm2596

Среди импульсных стала популярна LM2596, но по современным меркам у неё низкий КПД. Если более 1 ампера, то требуется радиатор. Небольшой список аналогичных:

  1. LM317
  2. LM2576
  3. LM2577
  4. LM2596
  5. MC34063

Дополню современным китайским ассортиментом, который хороший по характеристикам, но встречается гораздо реже. На Алиэкспресс помогает поиск именно по маркировке. Список собран по интернет-магазинам:

  • MP2307DN
  • XL4015
  • MP1584EN
  • XL6009
  • XL6019
  • XL4016
  • XL4005
  • L7986A

Так же подходят для китайских дневных ходовых огней ДХО. Из-за дешевизны светодиоды подключены через резистор к авто аккумулятору или автомобильной сети. Но напряжения скачет до 30 вольт импульсами. Низкокачественные светодиоды не выдерживают таких скачков и начинают дохнуть. Скорее всего вы видали мигающие ДХО или ходовые огни, у которых некоторые светодиоды не работают.

Сборка схемы своими руками на этих элементах будет простой. Преимущественно это стабилизаторы напряжения, которые включаются в режиме стабилизации тока.

Не путайте максимальное напряжение всего блока и максимальное напряжение ШИМ контроллера. На блоке могут быть установлены низковольтные конденсаторы на 20В, когда импульсная микросхема имеет вход до 35В.

Стабилизатор для светодиодов

Сделать стабилизатор тока для светодиодов своими руками проще всего на LM317, требуется только рассчитать резистор для светодиода на онлайн калькуляторе. Питание можно использовать подручное, например:

  1. блок питания от ноутбука на 19V;
  2. от принтера на 24В и 32В;
  3. от бытовой электроники на 12 вольт, 9V.

Преимущества такого преобразователя, это низкая цена, легко купить, минимум деталей, высокая надежность. Если схема стабилизатора тока сложнее, то собирать её своими руками становится не рационально. Если вы не радиолюбитель, то импульсный стабилизатор тока проще и быстрее купить. В дальнейшем его можно доработать до необходимых параметров. Подробнее вы можете узнать в разделе «Готовые модули».

Драйвер на 220 В

..

Если вас интересует драйвер для светодиода на 220в, то лучше его заказать или купить. Они имеют среднюю сложность изготовления, но настройка отнимет больше времени и потребуется опыт по наладке.

Светодиодный драйвер на 220 можно извлечь из неисправных светодиодных ламп, светильников и прожекторов, у которых неисправна цепь со светодиодами. К тому же практически любой имеющийся драйвер можно доработать. Для этого узнайте модель ШИМ контроллера, на котором собран преобразователь. Обычно параметры на выходе задаются резистором или несколькими. По даташиту (datasheet) посмотрите, какое сопротивление должно быть, чтобы получить нужные Амперы.

Если поставить регулируемый резистор рассчитанного номинала, то количество Ампер на выходе будет настраиваемым. Только не превышайте номинальную мощность, которая была указана.

Стабилизатор тока, схема

Мне приходится часто просматривать ассортимент на Aliexpress в поисках недорогих но качественных модулей. Разница по стоимости может быть в 2-3 раза, время уходит на поиск минимальной цены. Но благодаря этому делаю заказ на 2-3 штуки для тестов. Покупаю для обзоров и консультаций производителей, которые покупают комплектующие в Китае.

В июне 2016 года оптимальным выбором стал универсальный модуль на XL4015, цена которого 110руб с бесплатной доставкой. Его характеристики подходят для подключения мощных светодиодов до 100 Ватт.

Схема в режиме драйвера.

В стандартном варианте корпус XL4015 припаян к плате, которая служит радиатором. Для улучшения охлаждения на корпус XL4015 надо поставить радиатор. Большинство ставят его сверху, но эффективность такой установки низкая. Лучше систему охлаждения ставить снизу платы, напротив места пайки микросхемы. В идеале её лучше отпаять и поставить на полноценный радиатор через термопасту. Ножки скорее всего придется удлинить проводами. Если потребуется такое серьезное охлаждение контроллеру, то оно потребуется и диоду Шотки. Его тоже придётся поставить на радиатор. Такая доработка значительно повысит надежность всей схемы.

В основном модули не имеют защиты от неправильной подачи питания. Это моментально выводит их из строя, будьте внимательны.

LM317

Применение (крен) даже не требует каких либо навыков и знаний по электронике. Количество внешних элементов в схемах минимально, поэтому это доступный вариант для любого. Её цена очень низкая, возможности и применение многократно испытаны и проверены. Только она требует хорошего охлаждения, это её основной недостаток. Единственное стоит опасаться низкокачественных китайских микросхем ЛМ317, которые имеют параметры похуже.

Микросхемы линейной стабилизации из-за отсутствия лишних шумов на выходе, использовал для питания высококачественных ЦАП класса Hi-Fi и Hi-End. Для ЦАП огромную роль играет чистота питания, поэтому некоторые используют аккумуляторы для этого.

Максимальная сила для LM317 составляет 1,5 Ампера. Для увеличения количества ампер можно добавить в схему полевой транзистор или обычный. На выходе можно будет получить до 10А, задаётся низкоомным сопротивлением. На данной схеме основную нагрузку на себя берёт транзистор КТ825.

Другой способ, это поставить аналог с более высокими техническими характеристиками на большую систему охлаждения.

Регулируемый стабилизатор тока

Меня как радиолюбителя со стажем 20 лет радует ассортимент продаваемых готовых блоков и модулей. Сейчас из готовых блоков можно собрать любое устройство за минимальное время.

Я начал терять доверие к китайской продукции, после того, как у видел в «Танковом биатлоне», как у лучшего китайского танка отпало колесо.

Лидером по ассортименту блоков питания, преобразователей тока DC-DC, драйверов стали китайские интернет-магазины. У них в свободной продаже можно найти практически любые модули, если поискать получше, то и очень узкоспециализированные. Например за 10.000 т.руб можно собрать спектрометр стоимостью 100.000 руб. Где 90% цены это накрутка за бренд и немного доработанный китайский софт.

Цена начинается от 35руб. за DC-DC преобразователь напряжения, драйвер подороже и отличается двумя тремя подстроечными резисторами, вместо одного.

Для более универсального использования лучше подходит регулируемый драйвер. Основное отличие, это установка переменного резистора в цепи, задающей амперы на выходе. Эти характеристики могут быть указаны в типовых схемах включения в спецификациях на микросхему, даташит, datasheet.

Слабые места таких драйверов, это нагрев дросселя и диода Шотки. В зависимости от модели ШИМ контроллера, они выдерживают то 1А до 3А без дополнительного охлаждения микросхемы. Если выше 3А, то требуется охлаждение ШИМ и мощного диода Шотки. Дроссель перематывают более толстым проводом или заменяют на подходящий.

КПД зависит от режима работы, разницы напряжения между входом и выходом. Чем выше коэффициент полезного действия, тем ниже нагрев стабилизатора.

Цены в Китае

Стоимость очень низкая, с учетом того, что доставка включена в цену. Раньше я думал, что из-за товара за 30-50 руб китайцы даже и мараться не будут, много работы при малом доходе. Но как показала практика, я ошибался. Любую копеечную ерунду они упаковывают и отсылают. Приходит в 98% случаев, а закупаю на Aliexpress уже более 7 лет и на большие суммы, наверное уже около 1 млн руб.

Поэтому оформляю заказ заранее, обычно 2-3 штуки одного наименования. Ненужное распродаю на местном форуме или Авито, всё расходится как горячие пирожки.

Рассматриваемая сегодня микросхема - это регулируемый DC-DC преобразователь напряжения, или просто понижающий регулируемый стабилизатор тока 40 вольт на входе и от 1,2 до 35 В на выходе. LM2576 требует входное питание около 40-50 в постоянного тока. Так как она может держать токи до 3-х ампер, LM2576 работает как импульсный стабилизатор, способный управлять нагрузкой 3 А с минимальным количеством компонентов и небольшим радиатором. Цена микросхемы LM2576 составляет примерно 140 рублей.

Принципиальная схема стабилизатора


Особенности схемы

  • Выходное регулируемое напряжение 1,2 - 35 В и низкий уровень пульсаций
  • Потенциометр для плавной регулировки выходного напряжения
  • На плате есть мостовой выпрямитель напряжения переменного тока
  • Светодиодная индикация входного питания
  • Размеры печатной платы 70 х 63 мм


Предназначена схема для настольных блоках питания, зарядных устройств для батарей, как светодиодный драйвер. Далее 2 варианта исполнения - в стандартном и планарном виде:



Почему в таких источниках стабилизированного питания нельзя применять простые параметрические стабилизаторы типа LM317? Потому что рассеиваемая мощность на напряжении 30 В 3 А будет несколько десятков ватт - потребуется огромный радиатор и кулер. А вот при импульсной стабилизации выделяемая на микросхеме мощность почти в 10 раз меньше. Поэтому с LM2576 получаем небольшой и мощный, универсальный регулируемый стабилизатор напряжения.