Этапы решения нелинейного уравнения f x 0. Методы решения систем нелинейных уравнений

Рассмотрим задачу нахождения корней нелинейного уравнения

Корнями уравнения (1) называются такие значения х, которые при подстановке обращают его в тождество. Только для простейших уравнений удается найти решение в виде формул, т.е. аналитическом виде. Чаще приходится решать уравнения приближенными методами, наибольшее распространение среди которых, в связи с появлением компьютеров, получили численные методы.

Алгоритм нахождения корней приближенными методами можно разбить на два этапа. На первом изучается расположение корней и проводится их разделение. Находится область , в которой существует корень уравнения или начальное приближение к корню x 0 . Простейший способ решения этой задачи является исследование графика функции f(x) . В общем же случае для её решения необходимо привлекать все средства математического анализа.

Существование на найденном отрезке , по крайней мере, одного корня уравнения (1) следует из условия Больцано:

f(a)*f(b)<0 (2)

При этом подразумевается, что функция f(x) непрерывна на данном отрезке. Однако данное условие не отвечает на вопрос о количестве корней уравнения на заданном отрезке . Если же требование непрерывности функции дополнить ещё требованием её монотонности, а это следует из знакопостоянства первой производной, то можно утверждать о существовании единственного корня на заданном отрезке.

При локализации корней важно так же знание основных свойств данного типа уравнения. К примеру, напомним, некоторые свойства алгебраических уравнений:

где вещественные коэффициенты.

  • а) Уравнение степени n имеет n корней, среди которых могут быть как вещественные, так и комплексные. Комплексные корни образуют комплексно-сопряженные пары и, следовательно, уравнение имеет четное число таких корней. При нечетном значении n имеется, по меньшей мере, один вещественный корень.
  • б) Число положительных вещественных корней меньше или равно числа переменных знаков в последовательности коэффициентов. Замена х на -х в уравнении (3) позволяет таким же способом оценить число отрицательных корней. итерация Ньютон дихотомия нелинейный

На втором этапе решения уравнения (1), используя полученное начальное приближение, строится итерационный процесс, позволяющий уточнять значение корня с некоторой, наперед заданной точностью. Итерационный процесс состоит в последовательном уточнении начального приближения. Каждый такой шаг называется итерацией. В результате процесса итерации находится последовательность приближенных значений корней уравнения. Если эта последовательность с ростом n приближается к истинному значению корня x , то итерационный процесс сходится. Говорят, что итерационный процесс сходится, по меньшей мере, с порядком m, если выполнено условие:

где С>0 некоторая константа. Если m=1 , то говорят о сходимости первого порядка; m=2 - о квадратичной, m=3 - о кубической сходимостях.

Итерационные циклы заканчиваются, если при заданной допустимой погрешности выполняются критерии по абсолютным или относительным отклонениям:

или малости невязки:

Эта работа посвящена изучению алгоритма решения нелинейных уравнений с помощью метода Ньютона.

Решение одного нелинейного уравнения

Введение

Данная лабораторная работа включает в себя четыре метода решения одного нелинейного уравнения.

Использующиеся методы решения одного нелинейного уравнения:

Метод половинного деления.

Метод простой итерации.

Метод Ньютона.

Метод секущих.

Также данная лабораторная работа включает в себя: описание метода, применение метода к конкретной задаче (анализ), код программы решения вышеперечисленных методов на языке программирования MicrosoftVisualC++ 6.0.

Описание метода:

Пусть задана функция f (x) действительного переменного. Требуется найти корни уравнения f (x) =0 (1) или нули функции f (x).

Нули f (x) могут быть как действительными, так и комплексными. Поэтому наиболее точная задача состоит в нахождении корней уравнения (1), расположенных в заданной области комплексной плоскости. Можно рассматривать также задачу нахождения действительных корней, расположенных на заданном отрезке.

Задача нахождения корней уравнения (1) обычно решается в 2 этапа. На первом этапе изучается расположение корней и проводится их разделение, т.е. выделяются области в комплексной области, содержащие только один корень. Тем самым находятся некоторые начальные приближения для корней уравнения (1). На втором этапе, используя заданное начальное приближение, строится итерационный процесс, позволяющий уточнить значение отыскиваемого корня.

Численные методы решения нелинейных уравнений являются, как правило, итерационными методами, которые предполагают задание достаточно близких к искомому решению начальных данных.

Существует множество методов решения данной задачи. Но мы рассмотрим наиболее используемые методы решения по поиску корней уравнения (1): метод половинного деления (метод бисекции), метод касательных (метод Ньютона), метод секущих и метод простой итерации.

Теперь отдельно по каждому методу:

1. Метод половинного деления (метод бисекции)

Более распространенным методом нахождения корней нелинейного уравнения является метод деления пополам. Предположим, что на интервале расположен лишь один корень x уравнения (1). Тогда f (a) и f (b) имеют различные знаки. Пусть для определения f (a) >0, f (b) <0. Положим x0= (a + b) /2 и вычислим f (x0). Если f (x0) <0, то искомый корень находится на интервале , если же f (x0) >0, то x принадлежит . Далее из двух интервалов и выбираем тот на границах, которого функция f (x) имеет различные знаки, находим точку x1 - середину выбранного интервала, вычисляем f (x1) и повторяем указанный процесс. В результате получаем последовательность интервалов, содержащих искомый корень x, причем длина каждого последующего интервала вдвое меньше, чем предыдущего. Процесс заканчивается, когда длина вновь полученного интервала станет меньше приближенной точности (

>0), и в качестве корня x, приближенного принимается середина этого интервала.

Пусть начальное приближение x0 известно. Заменим f (x) отрезком ряда Тейлора

f (x) ≈ H1 (x) = f (x0) + (x - x0) f " (x0) и за следующее приближение x1 возьмем корень уравнения H1 (x) = 0, т.е. x1=x0 - f (x0) / f " (x0).

Вообще, если итерация xk известна, то следующее приближение xk+1 в методе Ньютона определяется по правилу xk+1=xk-f (xk) /f" (xk), k=0, 1, … (2)

Метод Ньютона называют также методом касательных, так как новое приближение xk +1 является абсциссой точки пересечения касательной, проведенной в точке (xk, f (xk)) к графику функции f (x) с осью Ox.

Особенность метода:

во-первых, метод имеет квадратичную сходимость, т.е. в отличие от линейных задач погрешность на следующей итерации пропорциональна квадрату погрешности на предыдущей итерации: xk+1-x=O ((xk-x) ²);

во-вторых, такая быстрая сходимость метода Ньютона гарантируется лишь при очень хороших, т.е. близких к точному решению, начальных приближениях. Если начальное приближение выбрано неудачно, то метод может сходиться медленно, либо не сойдется вообще.

3. Метод секущих

Этот метод получается из метода Ньютона заменой f" (xk) разделенной разностью f (xk) - f (xk-1) /xk-xk-1, вычисленной по известным значениям xk и xk-1. В результате получаем итерационный метод

, k=1, 2, … (3), который в отличие от ранее рассмотренных методов является двухшаговым, т.е. новое приближение xk+1 определяется двумя предыдущими итерациями xk и xk-1. В методе необходимо задавать два начальных приближения x0 и x1.

Геометрическая интерпретация метода секущих состоит в следующем. Через точки (xk-1, f (xk-1)), (xk, f (xk)) проводится прямая, абсцисса точки пересечения этой прямой с осью Ox и является новым приближением xk+1. Иначе говоря, на отрезке функция f (x) интерполируется многочленом первой степени и за очередное приближение xk+1 принимается корень этого многочлена.

4. Метод простой итерации

Этот метод заключается в замене уравнения (1) эквивалентным ему уравнением вида

(4) после этого строится итерационный процесс (5). При некотором заданном значении для приведения выражения (1) к требуемому виду (4) можно воспользоваться простейшим приёмом , .

Если в выражении (4) положить

, можно получить стандартный вид итерационного процесса для поиска корней нелинейного уравнения: .

Иначе можно получить уравнение (4) следующим способом: левую и правую часть уравнения (1) умножить на произвольную константу  и прибавить к левой и правой части х, т.е. получаем уравнение вида:

(6), где .

На заданном отрезке выберем точку х 0 - нулевое приближение - и найдем: х 1 = f (x 0), потом найдем: х 2 = f (x 1), и т.д. Таким образом, процесс нахождения корня уравнения сводится к последовательному вычислению чисел: х n = f (x n-1) n = 1,2,3… Если на отрезке выполнено условие: |f " (x) |<=q<1 то процесс итераций сходится, т.е.

. Процесс итераций продолжается до тех пор, пока |x n - x n-1 |<=, где  - заданная абсолютная погрешность корня х. При этом будет выполняться: .

Применение метода к конкретной задаче (анализ).

Дано уравнение вида x² - ln (1+x) - 3 = 0 при x

. Задача состоит в том, чтобы решить это нелинейное уравнение 4 известными способами: метод половинного деления, метод касательных, метод секущих и метод простой итерации.

Изучив методы и применив их к данному уравнению приходим к такому выводу: при решении данного уравнения 4 известными способами результат одинаков во всех случаях. Но количество итераций при прохождении метода значительно отличается. Зададим приближенную точность

= . Если в случае половинного деления количество итераций составляют 20, при методе простых итераций равно 6, при методе секущих они составляют 5, а при методе касательных их количество равно 4. Из полученного результата видно, что более эффективным методом является метод касательных. В свою очередь метод половинного деления является более неэффективным, затрачивающий больше времени на выполнение, но являющийся самым простым из всех перечисленных методов при исполнении. Но не всегда результат будет таковым. Подставляя другие нелинейные уравнения в программу, в результате получается, что при методе простой итерации при разных видах уравнений количество итераций колеблется. Количество итераций может быть значительно больше, чем в методе половинного деления и меньше, чем в методе касательных.

Листинг программы:

1. Метод половинного деления

#include

#include

#include

#define e 0.000001

double func (double x)

res=fopen ("bisekciy. txt","w");

while (fabs (a-b) >e)

if ((func (c) *func (a)) <0) b=c;

printf ("Otvet:%f\n",a);

printf ("Takge smotri otvet v file bisekciy. txt\n");

fprintf (res,"Результат решения уравнения методом половинного деления! \n");

2. Метод касательных (метод Ньютона)

#include

#include

#include

#define e 0.000001

double func (double x)

return ((((x*x) - (log (1+x))) - 3));

double dif (double x)

return ((2*x) - (1/ (1+x)));

res=fopen ("kasatelnih. txt","w");

while (fabs (a-b) >=e)

a=a-func (a) /dif (a);

b=b-func (b) /dif (b);

printf ("Funkciya prinimaet znachenie na intervale: [%d,%d] \n",x1,x2);

printf ("Otvet:%f\n",a);

printf ("Kol-vo iteraciy:%d \n",k);

printf ("Takge smotri otvet v file kasatelnih. txt\n");

fprintf (res,"Результат решения уравнения методом Ньютона! \n");

fprintf (res,"Корень уравнения x =%f\nКоличество итераций =%d",a,k);

3. Метод секущих

#include

Решение нелинейных уравнений

Пусть требуется решить уравнение

Где
– нелинейная непрерывная функция.

Методы решения уравнений делятся на прямые и итерационные. Прямые методы – это методы, позволяющие вычислить решение по формуле (например, нахождение корней квадратного уравнения). Итерационные методы – это методы, в которых задается некоторое начальное приближение и строится сходящаяся последовательность приближений к точному решению, причем каждое последующее приближение вычисляется с использованием предыдущих

Полное решение поставленной задачи можно разделить на 3 этапа:

    Установить количество, характер и расположение корней уравнения (1).

    Найти приближенные значения корней, т.е. указать промежутки, в которых наудится корни (отделить корни).

    Найти значение корней с требуемой точностью (уточнить корни).

Существуют различные графические и аналитические методы решения первых двух задач.

Наиболее наглядный метод отделения корней уравнения (1) состоит в определении координат точек пересечения графика функции
с осью абсцисс. Абсциссы точек пересечения графика
с осью
являются корнями уравнения (1)

Промежутки изоляции корней уравнения (1) можно получить аналитически, опираясь на теоремы о свойствах функций, непрерывных на отрезке.

Если, например, функция
непрерывна на отрезке
и
, то согласно теореме Больцано – Коши, на отрезке
существует хотя бы один корень уравнения (1)(нечетное количество корней).

Если функция
удовлетворяет условиям теоремы Больцано-Коши и монотонна на этом отрезке, то на
существует только один корень уравнения (1).Таким образом, уравнение (1) имеет на
единственный корень, если выполняются условия:


Если функция на заданном интервале непрерывно дифференцируема, то можно воспользоваться следствием из теоремы Ролля, по которому между парой корней всегда находится по крайней мере одна стационарная точка. Алгоритм решения задачи в данном случае будет следующий:


Полезным средством для отделения корней является также использование теоремы Штурма.

Решение третьей задачи осуществляется различными итерационными (численными) методами: методом дихотомии, методом простой итерации, методом Ньютона, методом хорд и т.д.

Пример Решим уравнение
методом простой итерации . Зададим
. Построим график функции.

На графике видно, что корень нашего уравнения принадлежит отрезку
, т.е.
– отрезок изоляции корня нашего уравнения. Проверим это аналитически, т.е. выполнение условий (2):


Напомним, что исходное уравнение (1) в методе простой итерации преобразуется к виду
и итерации осуществляются по формуле:

(3)

Выполнение расчетов по формуле (3) называется одной итерацией. Итерации прекращаются, когда выполняется условие
, где - абсолютная погрешность нахождения корня, или
, где -относительная погрешность.

Метод простой итерации сходится, если выполняется условие
для
. Выбором функции
в формуле (3) для итераций можно влиять на сходимость метода. В простейшем случае
со знаком плюс или минус.

На практике часто выражают
непосредственно из уравнения (1). Если не выполняется условие сходимости, преобразуют его к виду (3) и подбирают. Представим наше уравнение в виде
(выразим x из уравнения). Проверим условие сходимости метода:

для
. Обратите внимание, что условие сходимости выполняется не
, поэтому мы и берем отрезок изоляции корня
. Попутно заметим, что при представлении нашего уравнения в виде
, не выполняется условие сходимости метода:
на отрезке
. На графике видно, что
возрастает быстрее, чем функция
­­ (|tg| угла наклона касательной к
на отрезке
)

Выберем
. Организуем итерации по формуле:



Программно организуем процесс итераций с заданной точностью:

> fv:=proc(f1,x0,eps)

> k:=0:

x:=x1+1:

while abs(x1-x)> eps do

x1:=f1(x):

print(evalf(x1,8)):

print(abs(x1-x)):

:printf("Кол. итер.=%d ",k):

end :

На 19 итерации мы получили корень нашего уравнения

c абсолютной погрешностью

Решим наше уравнение методом Ньютона . Итерации в методе Ньютона осуществляются по формуле:

Метод Ньютона можно рассматривать как метод простой итерации с функцией, тогда условие сходимости метода Ньютона запишется в виде:

.

В нашем обозначении
и условие сходимости выполняется на отрезке
, что видно на графике:

Напомним, что метод Ньютона сходится с квадратичной скоростью и начальное приближение должно быть выбрано достаточно близко к корню. Произведем вычисления:
, начальное приближение, . Организуем итерации по формуле:



Программно организуем процесс итераций с заданной точностью. На 4 итерации получим корень уравнения

с
Мы рассмотрели методы решения нелинейных уравнений на примере кубических уравнений, естественно, этими методами решаются различные виды нелинейных уравнений. Например, решая уравнение

методом Ньютона с
, находим корень уравнения на [-1,5;-1]:

Задание : Решить нелинейные уравнения с точностью

0.


    деления отрезка пополам (дихотомии)

    простой итерации.

    Ньютона (касательных)

    секущих – хорд.

Варианты заданий рассчитываются следующим образом: номер по списку делится на 5 (
), целая часть соответствует номеру уравнения, остаток – номеру метода.

Идея метода. Выбирается уравнение, в котором одна из переменных наиболее просто выражается через остальные переменные. Полученное выражение этой переменной подставляется в оставшиеся уравнения системы.

  1. b) Комбинирование с другими методами.

Идея метода . Если метод прямой подстановки не применим на начальном этапе решения, то используются равносильные преобразования систем (почленное сложение, вычитание, умножение, деление), а затем проводят непосредственно прямую подстановку.

2) Метод независимого решения одного из уравнений.

Идея метода . Если в системе содержится уравнение, в котором находятся взаимно обратные выражения, то вводится новая переменная и относительно её решается уравнение. Затем система распадается на несколько более простых систем.

Решить систему уравнений

Рассмотрим первое уравнение системы:

Сделав замену , где t ≠ 0, получаем

Откуда t 1 = 4, t 2 = 1/4.

Возвращаясь к старым переменным, рассмотрим два случая.

Корнями уравнения 4у 2 – 15у – 4 = 0 являются у 1 = 4, у 2 = — 1/4 .

Корнями уравнения 4х 2 + 15х – 4 = 0 являются х 1 = — 4, х 2 = 1/4 .

3)Сведение системы к объединению более простых систем.

  1. a ) Разложение на множители способом вынесения общего множителя.

Идея метода. Если в одном из уравнений есть общий множитель, то это уравнение раскладывают на множители и, учитывая равенство выражения нулю, переходят к решению более простых систем.

  1. b ) Разложение на множители через решение однородного уравнения .

Идея метода. Если одно из уравнений представляет собой однородное уравнение (, то решив его относительно одной из переменных, раскладываем на множители, например: a(x-x 1)(x-x 2) и, учитывая равенство выражения нулю, переходим к решению более простых систем.

Решим первую систему

  1. c ) Использование однородности.

Идея метода. Если в системе есть выражение, представляющее собой произведение переменных величин, то применяя метод алгебраического сложения, получают однородное уравнение, а затем используют метод разложение на множители через решение однородного уравнения.

4) Метод алгебраического сложения.

Идея метода. В одном из уравнений избавляемся от одной из неизвестных, для этого уравниваем модули коэффициентов при одной из переменных, затем производим или почленное сложение уравнений, или вычитание.

5) Метод умножения уравнений.

Идея метода. Если нет таких пар (х;у), при которых обе части одного из уравнений обращаются в ноль одновременно, то это уравнение можно заменить произведением обоих уравнений системы.

Решим второе уравнение системы.

Пусть = t, тогда 4t 3 + t 2 -12t -12 = 0. Применяя следствие из теоремы о корнях многочлена, имеем t 1 = 2.

Р(2) = 4∙2 3 + 2 2 — 12∙2 – 12 = 32 + 4 — 24 — 12 = 0. Понизим степень многочлена, используя метод неопределенных коэффициентов.

4t 3 + t 2 -12t -12 = (t – 2) (at 2 + bt + c).

4t 3 +t 2 -12t -12 = at 3 + bt 2 + ct — 2at 2 -2bt — 2c.

4t 3 + t 2 — 12t -12 = at 3 + (b – 2a) t 2 + (c -2b) t — 2c.

Получаем уравнение 4t 2 + 9t + 6 = 0, которое не имеет корней, так как D = 9 2 — 4∙4∙6 = -15<0.

Возвращаясь к переменной у, имеем = 2, откуда у = 4.

Ответ. (1;4).

6) Метод деления уравнений.

Идея метода. Если нет таких пар (х; у), при которых обе части одного из уравнений обращаются в ноль одновременно, то это уравнение можно заменить уравнением, которое получается при делении одного уравнения системы на другое.

7) Метод введения новых переменных.

Идея метода. Некоторые выражения от исходных переменных принимаются за новые переменные, что приводит к более простой, чем первоначальная, системе от этих переменных. После того как новые переменные будут найдены, нужно найти значения исходных переменных.

Возвращаясь к старым переменным, имеем:

Решаем первую систему.

8) Применение теоремы Виета .

Идея метода. Если система составлена так, одно из уравнений представлено в виде суммы, а второе — в виде произведения некоторых чисел, которые являются корнями некоторого квадратного уравнения, то применяя теорему Виета составляем квадратное уравнение и решаем его.

Ответ. (1;4), (4;1).

Для решения симметричных систем применяется подстановка: х + у = а; ху = в. При решении симметричных систем используются следующие преобразования:

х 2 + у 2 = (х + у) 2 – 2ху = а 2 – 2в; х 3 + у 3 = (х + у)(х 2 – ху + у 2) = а(а 2 -3в);

х 2 у + ху 2 = ху (х + у) = ав; (х +1)∙(у +1) = ху +х +у+1 =а + в +1;

Ответ. (1;1), (1;2), (2;1).

10) «Граничные задачи».

Идея метода. Решение системы получаются путем логических рассуждений, связанных со структурой области определения или множества значений функций, исследование знака дискриминанта квадратного уравнения.

Особенность этой системы в том, что число переменных в ней больше числа уравнений. Для нелинейных систем такая особенность часто является признаком «граничной задачи». Исходя из вида уравнений, попытаемся найти множество значений функции, которая встречается и в первом, и во втором уравнении системы. Так как х 2 + 4 ≥ 4, то из первого уравнения следует, что

Ответ (0;4;4), (0;-4;-4).

11) Графический метод.

Идея метода . Строят графики функций в одной системе координат и находят координаты точек их пересечения.

1) Переписав первое уравнение систем в виде у = х 2 , приходим к выводу: графиком уравнения является парабола.

2) Переписав второе уравнение систем в виде у =2/х 2 , приходим к выводу: графиком уравнения является гипербола.

3) Парабола и гипербола пересекаются в точке А. Точка пересечения только одна, поскольку правая ветвь параболы служит графиком возрастающей функции, а правая ветвь гиперболы — убывающей. Судя по построенной геометрической модели точка А имеет координаты (1;2). Проверка показывает, что пара (1;2) является решением обоих уравнений системы.

В этой главе рассматривается задача отыскания корней нелинейных уравнений и излагаются методы ее решения. Это делается несколько подробнее, чем обычно принято в учебниках по численным методам. Дело в том, что нелинейное уравнение представляет собой редкий пример задачи, которая может быть сравнительно полно исследована элементарными средствами и допускает наглядные геометрические иллюстрации. В то же время многие проблемы, возникающие при отыскании корней нелинейных уравнений, типичны, а некоторые методы их решения (в особенности метод простой итерации и метод Ньютона) допускают широкие обобщения и играют в вычислительной математике фундаментальную роль.

§ 4.1. Постановка задачи. Основные этапы решения

1. Постановка задачи.

Задача отыскания корней нелинейного уравнения с одним неизвестным вида

имеет многовековую историю, но не потеряла свою актуальность и в наши дни. Она часто возникает как элементарный шаг при решении различных научных и технических проблем. Напомним, что корнем (или решением) уравнения (4.1) называется значение х, при котором

Для справедливости большинства рассуждений данной главы достаточно предположить, что в окрестности каждого из искомых корней функция дважды непрерывно дифференцируема.

Корень х уравнения (4.1) называется простым, если противном случае (т. е. в случае корень х называется кратным. Целое число назовем кратностью корня х, если для Геометрически корень х соответствует точке пересечения графика функции с осью Корень х является простым, если график пересекает ось под ненулевым углом, и кратным, если пересечение происходит под нулевым углом. Функция график который изображен на рис. 4.1, имеет четыре корня. Корни простые, кратные.

Задача отыскания простых корней является существенно более простой (и чаще встречающейся), чем задача отыскания кратных корней. В действительности большинство методов решения уравнения (4.1) ориентировано именно на вычисление простых корней.

2. Уточнение постановки задачи.

В конкретной задаче часто интерес представляют не все корни уравнения, а лишь некоторые из них. Тогда постановку задачи уточняют, указывая на то, какие из корней подлежат определению (положительные корни, корни из заданного интервала, максимальный из корней и т.д.).

В подавляющем большинстве случаев представить решение уравнения (4.1) в виде конечной формулы оказывается невозможным. Даже для простейшего алгебраического уравнения степени

явные формулы, выражающие его корни через коэффициенты с помощью конечного числа арифметических операций и извлечения корней степени не выше найдены лишь при Однако уже для

уравнений пятой и более высоких степеней таких формул не существует. Этот замечательный факт, известный как теорема Абеля, был установлен в 30-е годы XIX в. Н. Абелем и Э. Галуа.

Невозможность найти точное решение нелинейного уравнения кажется огорчительной. Однако нужно признать, что желание найти точное числовое значение решения вряд ли следует считать разумным. Во-первых, в реальных исследованиях зависимость является лишь приближенным описанием, моделирующим истинную связь между параметрами у их. Поэтому точное решение х уравнения (4.1) все равно является лишь приближенным значением того параметра х, который в действительности соответствует значению . Во-вторых, даже если уравнение (4.1) допускает возможность нахождения решения в виде конечной формулы, то результат вычислений по этой формуле почти с неизбежностью содержит вычислительную погрешность и поэтому является приближенным.

Пример 4.1. Предположим, что исследование некоторого явления привело к необходимости решить уравнение

Воспользовавшись формулами (3.2) для корней квадратного уравнения, получим значения Найдены ли нами точные значения параметра Очевидно, нет. Скорее всего коэффициенты уравнения (4.3) известны приближенно и в лучшем случае они представляют округленные значения "истинных" коэффициентов. В действительности можно лишь утверждать, что

Предположим теперь, что "истинный" вид уравнения (4.3) таков: Тогда точные значения параметра можно вычислить по формуле Однако она лишь указывает на то, какие операции и в каком порядке следует выполнить. В данном случае точное вычисление по формуле невозможно, так как она содержит операцию извлечения квадратного корня. Вычисленные по ней значения неизбежно окажутся приближенными.

В дальнейшем мы откажемся от попыток найти точные значения корней уравнения (4.1) и сосредоточим внимание на методах решения более реалистичной задачи приближенного вычисления корней с заданной точностью

В данной главе под задачей отыскания решений уравнения (4.1) будем понимать задачу вычисления с заданной точностью конечного числа подлежащих определению корней этого уравнения.

3. Основные этапы решения.

Решение задачи отыскания корней нелинейного уравнения осуществляют в два этапа. Первый этап называется этапом локализации (или отделения) корней, второй - этапом итерационного уточнения корней.

Локализация корней. Отрезок содержащий только один корень х уравнения (4.1), называют отрезком локализации корня х. Цель этапа локализации считают достигнутой, если для каждого из подлежащих определению корней удалось указать отрезок локализации (его длину стараются по возможности сделать минимальной).

Прежде чем переходить непосредственно к отысканию отрезков локализации, имеет смысл провести предварительное исследование задачи для выяснения того, существуют ли вообще корни уравнения (4.1), сколько их и как они расположены на числовой оси.

Способы локализации корней многообразны, и указать универсальный метод не представляется возможным. Иногда отрезок локализации известен либо он определяется из физических соображений. В простых ситуациях хороший результат может давать графический метод (см. пример 4.2). Широко применяют построение таблиц значений функций вида При этом способе локализации о наличии на отрезке корня судят по перемене знака функции на концах отрезка (см. пример 4.3). Основанием для применения указанного способа служит следующая хорошо известная теорема математического анализа.

Теорема 4.1. Пусть функция непрерывна на отрезке и принимает на ею концах значения разных знаков, т. е. Тогда отрезок содержит по крайней мере один корень уравнения

К сожалению, корень четной кратности не удается локализовать на основании перемены знака с помощью даже очень подробной таблицы.

Дело в том, что в малой окрестности такого корня (например, корня на рис. 4.1) функция имеет постоянный знак.

Важно подчеркнуть, что далеко не всегда для успешного отыскания

корня х уравнения (4.1) необходимо полное решение задачи локализации. Часто вместо отрезка локализации достаточно найти хорошее начальное приближение к корню х. Пример 4.2. Локализуем корни уравнения

Для этого преобразуем уравнение к виду и построим графики функций (рис. 4.2). Абсциссы точек пересечения этих графиков являются корнями данного уравнения. Из рис. 4.2 видно, что уравнение имеет два корня и расположенные на отрезках и . Убедимся, что функция принимает на концах указанных отрезков значения разных знаков. Действительно, Следовательно, в силу теоремы 4.1 на каждом из отрезков и находится по крайней мере один корень.

Пример 4.3. Локализуем корни уравнения

Для этого составим таблицу значений функции на отрезке с шагом 0.4.

Таблица 4.1 (см. скан)

Из табл. 4.1 видно, что функция меняет знак на концах отрезков Теорема 4.1 дает основание утверждать, что каждый из этих отрезков содержит по крайней мере один корень. Учитывая, что в силу основной теоремы алгебры многочлен третьей степени не может иметь более трех корней, заключаем, что полученные три отрезка содержат ровно по одному корню. Таким образом, корни локализованы.

Итерационное уточнение корней. На этом этапе для вычисления каждого из корней с точностью используют тот или иной итерационный метод, позволяющий построить последовательность приближений к корню

Общее представление об итерационных методах и основные определения были даны в § 3.3. Введем дополнительно некоторые определения.

Итерационный метод называют одношаговым, если для вычисления очередного приближения используется только одно предыдущее приближение и к шаговым, если для вычисления используются к предыдущих приближений Заметим, что для построения итерационной последовательности одношаговым методом требуется задание только одного начального приближения в то время как при использовании -шагового метода - к начальных приближений

Скорость сходимости - одна из важнейших характеристик итерационных методов. Говорят, что метод сходится со скоростью геометрической прогрессии, знаменатель которой если для всех справедлива следующая оценка:

Как нетрудно видеть, из оценки (4.5) действительно вытекает сходимость метода.

Пусть одношаговый итерационный метод обладает следующим свойством: существует -окрестность корня х такая, что если приближение принадлежит этой окрестности, то справедлива оценка

где постоянные. В этом случае число называют порядком сходимости метода. Если то говорят, что метод обладает линейной скоростью сходимости в указанной -окрестности корня. Если то принято говорить о сверхлинейной скорости сходимости. При скорость сходимости называют