Температурный интервал вынужденной эластичности различных полимеров. Температурный интервал горячей обработки металлов давлением Нагрев сталей под обработку давлением

Из таблицы видно, что интервал вынужденной эластичности для разных полимеров колеблется в широких пределах. Так, полиметилметакрилат имеет значительно больший интервал вынужденной эластичности, чем полистирол, что определяет области его применения. Очень большая разность между и наблюдается у поливинилхлорида. Каучуки теряют свое основное свойство - высокую эластичность - при температурах от -20 до -70°С. Однако некоторые каучуки (СКН-40, СКС-З0) сохраняют известную гибкость и способность к большим деформациям до очень низких температур. В то же время такой морозостойкий каучук, как натуральный, имеет очень небольшой интервал вынужденной эластичности. Следовательно, изделия, эксплуатирующиеся при очень низких температурах, лучше изготовлять из каучука СКН-40, а не из натурального.

Интервал вынужденной эластичности определяется главным образом значением температуры хрупкости, которая зависит от прочности материала при хрупком разрыве () и от характера изменения с температурой.

Высокая температура хрупкости материала может быть обусловлена двумя факторами: низкой хрупкой прочностью материала () или резким увеличением предела вынужденной эластичности с понижением температуры (). У высокомолекулярных соединений хрупкая прочность обычно очень высока, следовательно, решающим фактором является второй: чем резче увеличивается с понижением температуры, тем меньше температурный интервал вынужденной эластичности. Характер температурной зависимости определяется природой полимера - энергией межмолекулярного взаимодействия, плотностью упаковки макромолекул и молекулярной массой. С усилением межмолекулярного взаимодействия температурный интервал вынужденной эластичности расширяется. Это объясняется образованием за счет взаимодействия полярных групп прочных связей (узлов) между цепями, в результате чего происходит увеличение хрупкой прочности. В то же время эти связи достаточно лабильны, и при приложении больших напряжений возможны перегруппировки участков цепей, приводящие к более равномерному нагружению всей молекулярной сетки. Это означает, что вынужденно-эластические деформации могут происходить при более низких температурах, следовательно, кривая зависимости имеет небольшой наклон. В этом случае наблюдается низкая температура хрупкости.

В заключение необходимо подчеркнуть, что прочность полимеров, как правило, в несколько раз ниже теоретической, что обусловлено наличием дефектов -- концентраторов напряжений. Наличие дефектов приводит к тому, что определяемое значение прочности является среднестатистическим. Существует разброс значений прочности и проявляется влияние масштабного фактора на прочность. Теорией, качественно правильно объясняющей закономерности прочности твердых полимеров, является теория Гриффита, отклонения от которой тем больше, чем большая доля упругого напряжения в разрушаемом образце идет на потери, связанные с процессами деформации. Наряду с понятием прочности по Гриффиту существует понятие долговечности, т. е. времени, в течение которого образец разрушается под действием данного напряжения, меньшего чем Ор. Установлена прямая пропорциональность между 1дтр и а для твердых полимеров, малодеформируемых в момент разрушения, и прямая пропорциональность между ]gтp и lga для эластичных полимеров (резин).

В кремнийорганических полимерах проявляется преимущество силоксановой связи -- ее высокая термическая устойчивость. Вместе с тем углеводородные радикалы придают полимерам гибкость, эластичность и способность растворяться в органических жидкостях. Чем больше число органических радикалов, приходящихся на один атом кремния, или чем меньше число поперечных связей, тем выше эластичность полимера. Наиболее эластичны линейные кремнийорганические полимеры, у которых на один атом кремния приходятся два органических радикала. В этом случае полимерные цепи связаны между собой только межмолекулярными силами, дающими возможность цепям, в отличие от химических связей, перемещаться друг относительно друга. Поперечные химические связи повышают твердость и прочность кремнийорганических полимерных веществ. Если число поперечных связей невелико и расположены они редко, то соединения более прочны, чем линейные, и в то же время сохраняют высокую гибкость и эластичность, свойственную резинам. Когда образуются пространственные структуры с частыми поперечными связями, получаются прочные твердые нерастворимые вещества, обладающие различной степенью эластичности в зависимости от числа поперечных связей.

Зависимость эластичности полимера от молекулярного веса легко представить, сравнив продольные и поперечные размеры молекулярных цепей. Длина макромолекул превышает их поперечные размеры в несколько тысяч раз. Для иллюстрации можно взять стальную проволоку длиной 5 л и толщиной 1 мм. Ясно, что несмотря на твердость стали, проволока при таком соотношении длины и толщины окажется вполне гибкой.

эластичность полимер силоксановый кремнийорганический

Для горячей обработки давлением металл нагревается до определенной температуры (далее "температура" - "т-ра." ) и деформируется до тех пор, пока т-ра его не опустится до такой, при которой дальнейшая деформация окажется невозможной . Таким образом, металл может быть деформирован в строго определенном температурном интервале. Максимальная т-ра его называется верхней границей , а минимальная - нижней . Каждый металл имеет свой строго определенный тр-ный интервал горячей обработки давлением.

Верхний предел т-рного интервала t в.п избирается так, чтобы не было пережигания, интенсивного окисления и обезуглероживания, а также перегрева. При выборе верхней границы т-рного интервала для высокоуглеродистых и легированных сталей необходимо иметь в виду их большую склонность к перегреву.

Температура нижней границы t н.п должна быть такая, чтобы после деформации при этой т-ре металл не получил укрепления (наклепа) и имел необходимую величину зерна. Особое значение выбор нижней границы имеет для легированных сталей и сплавов, не имеющих фазовых и аллотропических превращений, например для аустенитных и ферритных сталей. Конечные свойства этих сталей определяются в основном нижней границей температурного интервала (поскольку они не подвергаются термической обработке).

Практически верхний предел t в.п для углеродистых сталей расположен на 100-200° ниже линии солидуса АЕ (рис.1.12). Для доэвтектоидной углеродистых сталей оптимальной т-рой конца ковки является А 3 + (25 - 50°).

Для низкоуглеродистых сталей (до 0,3% С) окончания обработки давлением в интервале температур А 3 - А 1 является вполне допустимым (рис. 1.12, штриховая линия) . При этом конечный размер зерен мельче, чем при окончании процесса выше А 3 . Для заэвтектоидных стали обработка давлением заканчивается в интервале т-р А ст - А 1 .

При окончании обработки в этом интервале температур цементит, выделившийся ниже линии SE , имеет форму мелких раздробленных включений. Это улучшает служебные свойства заэвтектоидных стали, в частности повышаются режущие свойства инструмента. С повышением содержания углерода пластичность стали снижается. Поэтому при сравнительно низких температурах, близких к А 1 обработку давлением высокоуглеродистых сталей можно заканчивать только в том случае, если схема напряженного состояния обеспечивает металл высокой пластичностью (например, штамповка в закрытых штампах и т. п.) .

Если схема всестороннего неравномерного сжатия выражена менее резко, как, например, при ковке на плоских бойках, то с увеличением содержания углерода в заэвтектоидных сталях нижняя граница т-рного интервала ковки должна быть несколько повышена (рис. 1.12, штриховая линия) . На рис. 1.12 температурный интервал нанесен в виде заштрихованной области. Из данного рисунка видно, что с повышением содержания углерода в стали температура границ снижается, а т-рный интервал сужается.

Нагрев металла повышает его пластичность. Однако, температуры нагрева должны лежать в определенном интервале.

Слишком низкие температуры нагрева могут вызывать упрочнение (наклеп) металла. Упрочнение (наклеп) – явление снижения запаса пластичности материала вследствие искажения кристаллической решетки и изменения формы зерен металла под действием силового инструмента (штампа). Упрочнение может вызвать разрушение исходной заготовки в процессе обработки давлением вследствие снижения пластичности.

Слишком высокие температуры нагрева вызывают такие явления, как перегрев и пережог.

Перегрев характеризуется резким ростом размеров зерна, обуславливающим снижение пластичности металла. Перегрев ухудшает свойства получаемых изделий и его следует избегать. Последствия перегрева в большинстве случаев можно исправить последующей термообработкой (отжигом), но для ряда материалов такое исправление вызывает значительные трудности.

Пережог возникает при более высоких температурах, чем перегрев. Пережог характеризуется окислением и оплавлением границ зерен, что нарушает связь между ними. В случае пережога материал не может обрабатываться давлением и должен быть отправлен на переплавку, поскольку пережог является неисправимым видом брака.

Температурный интервал, расположенный между оптимальными температурами начала и конца горячей обработки материала, называется температурным интервалом горячей обработки давлением . Этот интервал находится в области максимальной пластичности конкретного материала. Причем, в этом температурном интервале не должны возникать явления упрочнения (наклепа) металла, перегрева и пережога.

Температурный интервал горячей обработки давлением для углеродистых и легированных сталей приведен в табл. 3.

Объем последующей механической обработки, связанной с получение детали из заготовки, с определенной степенью приближения оценивается коэффициентом использования металла заготовки – КИМз. Чем больше КИМз, тем меньше расход металла, удаляемого в отход при механической обработки заготовки, полученной обработкой давлением.

КИМз = Мдетали / Мпоковки = Vдетали /Vпоковки.

Объем поковки (Vпоковки) отличается от объема детали на величину штамповочных уклонов, припусков на механическую обработку, радиусов скруглений и напусков.

Объем металла, приходящегося на радиусы скруглений пересекающихся поверхностей, рассчитывается как половина объема усеченного конуса, образующая которого проходит через места сопряжения радиуса с пересекающимися поверхностями.

В отличие от кристаллов, стёкла не имеют определенной температуры затвердевания или плавления. Оба эти процесса протекают в некотором температурном интервале. Это принципиальное различие свойств объясняется особенностями структуры кристаллов и стёкол (рис.1.4).

кристалл стекло

Рис. 1.4. Структуры кристаллического и стеклообразного

состояния вещества

Энергия парного взаимодействия атомов в кристалле одинаковая: e 1 =e 2 =e 3 =¼=e i . При повышении температуры растет подвижность согласовано колеблющихся атомов в правильной кристаллической решетке, увеличивается среднее расстояние между ними. Из-за ангармоничности колебаний атомов возникают области уплотнения и разрежения кристаллической структуры. Появляются локальные микрообъёмы относительно близко расположенных атомов. При температуре плавления Т пл вследствие исчезновения касательных напряжений между атомами в областях разрежения возникают плоскости скольжения смежных соседних микрообъёмов с плотно расположенными атомами. Такие группировки атомов обладают высокой подвижностью и относительно свободно перемещаются в жидкости. Текучесть – основное свойство жидкости.

В стекле все связи неравноценны по величине и направлению: e 1 ¹e 2 ¹e 3 ¹¼¹e i . При повышении температуры растёт расстояние между атомами, силы притяжения постепенно уменьшаются без существенного ослабления связей между соседними микрообъёмами. Сначала нарушаются более слабые разрозненные связи, а затем – сильные. В стекле нет кристаллографических плоскостей, слабые связи не локализованы в определённых плоскостях, как в кристалле, а распределены случайным образом по всей структуре стекла. Так как слабые связи разрознены и разориентированы, распределены по всему объёму стекла, то при нагревании не возникает и скачкообразного роста текучести вещества. Из-за геометрически неправильной структуры стекла исключается появления плоскостей скольжения. Рост температуры приводит к постепенному разупрочнению структуры стекла. Стекло не плавится, а размягчается.



При охлаждении стеклообразующий расплав переходит из жидкого состояния в пластическое и только затем в твердое состояние.

Процесс стеклования : расплав®пластическое состояние®твердое состояние.

При нагревании система также проходит через стадию пластического состояния.

Процесс размягчения : твердое состояние®пластическое состояние®расплав

Температурный интервал, в котором происходят процессы стеклования или размягчения называется температурным интервалом стеклования. Интервал стеклования ограничен двумя температурами: со стороны высоких температур – температурой Т f ; со стороны низких температур – температурой Т g .

Т f – температура текучести (нем. fliissigheit – жидкость);

Т g – температура стеклования (нем. glas – стекло);

При охлаждении ниже температуры стеклования стекло теряет последние свойства жидкости, становится твёрдым телом и для него характерен хрупкий излом. При нагревании выше температуры текучести стекло теряет последние свойства твердого состояния и из стекломассы можно вытягивать нити стекла. Ниже температуры текучести формировать изделия из стекла невозможно. Процессы стеклования и размягчения являются однофазными (табл. 1.1).

Таблица 1.1

Сопоставление свойств кристаллических и

стеклообразных тел

Так как в стёклах расстояния между атомами и энергии их взаимодействия для различных пар соседних атомов различаются, то в структуре стекла всегда имеется определённая доля атомов с энергией взаимодействия меньшей, чем в соответствующем кристалле. Эти атомы во многом и определяют пластические свойства стекла. Поэтому температуры Т g и T f всегда лежат ниже температуры плавления Т пл соответствующего кристалла и зависят от состава стекла. Температуры Т g и T f являются характеристическими температурами на температурной зависимости вязкости стёкол (табл. 1.2).

Таблица 1.2

Характеристические температуры различных стёкол

Температура стеклования Т g соответствует вязкости h = 10 12,3 Па×с, температура текучести T f соответствует вязкости h = 10 8 Па×с (рис. 1.5).

Рис. 1.5. Температурная зависимость вязкости

Отметим очень широкий интервал изменения вязкости в интервале стеклования. Вязкость стеклообразных расплавов вблизи температуры плавления Т пл обычно очень большая. Ниже в таблице 1.3 сопоставлены вязкости различных веществ (1 Па×с = 10 пуаз).

Таблица 1.3

Вязкости расплавов различных веществ

Общие условия стеклообразования при охлаждении расплава:

1. Вязкость при понижении температуры в точке плавления должна нарастать интенсивно, но не скачкообразно.

2. Возможность перевода вещества в стеклообразное состояние из жидкого определяется для каждого вещества скоростью охлаждения в области температур, где велика вероятность кристаллизации. Скорость охлаждения в интервале от температуры ликвидуса до температуры стеклования Т g должна превышать критическую, при которой возможно образование центров кристаллизации.

Интервал стеклования широко используется в теории и практике стекловарения. Тем не менее, границы интервала стеклования условны и зависят от условий проведения опыта.

Например, для стёкол системы PbO-SiО 2 получены данные (табл. 1.4).

Таблица 1.4

Изменение температуры стеклования со скоростью

нагревания образца стекла

Чем выше скорость нагревания, тем больше температура стеклования. Для однозначности представлений о свойствах различных стёкол определение характеристических температур ведут при стандартной скорости нагрева образца, равной 3 град/мин. Для определения температур стеклования Т g и размягчения Т w , как правило, используют дилатометр.

Рис. 1.6. Влияние температуры на линейные размеры

образца стекла

Температура стеклования находится графически (рис. 1.6) по пересечению касательных на дилатометрической кривой и является удобным критерием для анализа свойств стекла. В действительности, у стекла нет температуры стеклования, так как никакие свойства стекла при температуре Т g не меняются скачкообразно. Температура стеклования отражает появление у стекла при нагревании качественно новых свойств, отсутствующих у твёрдого стекла при низких температурах. При температуре стеклования твёрдое состояние начинает постепенно переходить в жидкое состояние. Этот процесс завершается при температуре текучести, однако в полной мере свободное течение проявляется при вязкости расплава стекла 10 Па∙с и менее. В интервале вязкости 10 8 -10 2 Па∙с стекломасса пластична, что позволяет придавать стеклу различную форму, легко закрепляемую при охлаждении до интервала стеклования.

Несмотря на условность понятия температуры стеклования, эта характеристическая температура широко используется в практике и теории стеклоделия. Температуру стеклования можно определить и при охлаждении образца.

Например, для стекла системы Na 2 O-CaO-SiO 2 получены следующие значения (табл. 1.5).

Таблица 1.5

Влияние скорости охлаждения на температуру стеклования

С увеличением скорости охлаждения температура стеклования Т g возрастает. Такую зависимость можно обосновать теоретически, анализируя охлаждение как релаксационный процесс. Релаксация – это процесс перехода системы к равновесному состоянию. Время релаксации обратно пропорционально скорости охлаждения

.

С другой стороны, релаксация является активационным процессом.

,

где U – энергия активации процесса структурной перестройки при релаксации.

Сопоставим обе зависимости:

, ,

.

В правой части последнего уравнения все параметры, кроме скорости охлаждения W охл , являются постоянными. Экспериментальное уравнение зависимости Т g = Т g (W охл ) для стеклообразных веществ имеет похожий вид:

,

где С 1 – постоянная, зависящая от состава стекла.

Температура стеклования тем выше, чем больше температура плавления соответствующего кристаллического вещества (табл. 1.6).

Таблица 1.6

Температуры плавления и стеклования различных оксидов

Для многих стёкол выполняется правило «двух третей»:

,

что и подтверждается данными таблицы.

  • А – САР тиску пари на виході з барабану котла; б – САР витрати повітря; в – САР тиску палива; г – САР температури палива; д – САР тиску пари перед форсунками
  • Ағыстағы газдың температурасын анықтау. Тежелу температурасы. Температураны өлшейтін қабылдағыштар.
  • Абиотические и биотические факторы, прямое и сигнальное действие абиотических фак-в. Действие температуры на живые орг-мы.
  • Аварийные переключения, как правило, производятся в ограниченном временном интервале и требуют от персонала четкости, самостоятельности и ответственности при их выполнении.
  • Адсорбция зависит от концентрации компонентов и температуры.
  • Анализ распределения судейских оценок для построения шкалы равных интервалов
  • В выводе необходимо отметить, образуют ли исследуемые вещества химические соединения; температуру плавления и состав эвтектической смеси.
  • Вероятностные, числовые и интервальная характеристики результатов измерений.
  • Конечная структура и механические свойства деформированного металла зависят от термомеханического режима горячей штамповки, определяемого наряду с температурой такими факторами, как степень деформации, скорость деформаций, вид напряженного состояния.

    Температурный интервал штамповки при этом играет основную роль: максимальная температура нагрева обеспечивает наивысшую пластич­ность обрабатываемого металла, а минимальная температура конца штамповки предотвращает нежелательный рост зерна. Главными фак­торами, определяющими указанный допустимый интервал температур штамповки, являются химический состав сплава и его физические свойства.

    Необходимый интервал температур штамповки определяется време­нем, нужным для выполнения данной операции, и лежит в пределах допустимого интервала. Иногда целесообразно снижать верхнюю гра­ницу температурного интервала из-за необходимости уменьшения окалинообразования или обезуглероживания металла.

    Температура горячей штамповки находится между температурами плавления и конца рекристаллизации сплава. Вблизи температуры плавления стали находится область температур пережога, связанного с оплавлением и окислением границ зерен. Несколько ниже находится зона температур перегрева, которая характеризуется значительным ростом зерен. Однако крупнозернистая структура большинства марок стали хорошо поддается ковке. При этом зерно измельчается.

    Максимальная температура нагрева может находится в области темпе­ратур перегрева, которая начинается при температуре критического роста зерна.

    Установление температурного интервала ковки связано с именем Д.К. Чернова (1868 г.), который указывал, что сталь следует ковать при определенных температурах, которые обеспечивают хорошее ка­чество поковок.

    Для низкоуглеродистой стали область ковочных температур совпадает с однофазной аустенитной областью и частично распро­страняется на двухфазную область, где свободной структурной составляющей является феррит.

    Заэвтектоидные стали штампуют в аустенитной и двухфазной областях со структурно свободным цеметитом. Штамповка среднеуглеродистых сталей должна заканчиваться выше линии АС 3 , что обеспечивает устойчивую мелкозернистую структуру.

    Для низкоуглеродистой стали допустима более низкая температу­ра конца штамповки (между АС 3 и АС 1 ) особенно для крупных поковок.



    Для заэвтектоидной стали, у которой, структурно свободной фазой является хрупкий цементит, температура конца штамповки должна быть по возможности более низкой, а охлаждение быстрым во избежание образования цементитной сетки. Однако эти рекомендации приемлемы для стали с большим содержанием углерода, у которого вследствие графитизации возможен "черный излом».

    Максимальный интервал ковочных температур для низкоуглеродистых сталей достигает 600°, для эвтектоидных сталей - 400 ¼ 450°, для заэвтектоидных сталей – 200 ¼ 300°. Для высоколегированных и жаропрочных сталей он уменьшается до 100 ¼ 150°.

    Необходимый интервал может совпасть с допустимым лишь в частном случае при равенстве времени, затрачиваемого на штамповку, и времени остывания заготовки в интервале ковочных температур. Обе эти величины могут в значительной степени изменяться в зависимости от сложности поковки и темпа работы, зависящего от механизации про­цесса и быстроходности оборудования.