Значение процессинга рнк. Новосинтезированные рнк еще неактивны

Введение

Биосинтез белка можно разделить на стадии транскрипции , процессинга и трансляции . Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы мРНК. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путем присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.

Процессинг

Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. С появлением процессинга в эукариотической клетке стало возможено комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК.

Кэпирование

Химическая структура кэпа

При кэпировании происходит присоединение к 5"-концу транскрипта 7-метилгуанозина посредстом трифосфатного моста, соединяющего их в необычной позиции 5"-5", а также метилирование рибоз двух первых нуклеотидов. Процесс кэпирования начинается еще до окончания транскрипции молекулы пре-мРНК.

Функции кэп-группы:

  • регулирование экспорта мРНК из ядра;
  • защита 5"-конца транскрипта от экзонуклеаз;
  • участие в инициации трансляции

Полиаденилирование

Полиаденилирование заключается в присоединении к 3"-концу транскрипта от 100 до 200 остатков адениловой кислоты, осуществляемом специальным ферментом poly(A)-полимераза.

Сплайсинг

После полиаденилирования мРНК подвергается удалению интронов. Процесс катализируется сплайсосомой и называется сплайсингом.

Трансляция

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки . Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации .


Wikimedia Foundation . 2010 .

Смотреть что такое "Процессинг (биология)" в других словарях:

    У этого термина существуют и другие значения, см. Процессинг (биология). Процессинг деятельность, включающая в себя обработку и хранение информации, необходимой при осуществлении платежей. Термин часто используется в отрасли банковских… … Википедия

    Доставка малых РНК, содержащих шпильки, при помощи вектора на основе лентивируса и механизм РНК интерференции в клетках млекопитающих РНК интерференция (а … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновые кислоты (РНК) нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток… … Википедия

    Центральная догма молекулярной биологии обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом… … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновые кислоты (РНК) нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновая кислота (РНК) одна из трёх основных макромолекул (две другие … Википедия

    Центральная догма молекулярной биологии обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком… … Википедия

    Схема синтеза белка рибосомой Биосинтез белка сложный многостадийный процесс синтеза полипептидной цепи из … Википедия

  • Задание 1. Ознакомиться с внешним видом и ультраструктурой эукариотных клеток.
  • Классификация нуклеотидных последовательностей в геноме эукариот (уникальные и повторяющиеся последовательности).
  • Клетка - элементарная, генетическая и структурно-функциональная биологическая единица. Прокариотические и эукариотические клетки.
  • Лекция № 11. Антигены, основные свойства. Антигены гистосовместимости. Процессинг антигенов.
  • Органоиды эукариотической клетки, их функции и гипотезы происхождения.
  • Принцип регуляции генной активности у прокариот (модель оперона) и эукариот.
  • Энхансеры.

    Усиливающие транскрипцию при взаимодействии со специфическими белками. Энхансеры это не непрерывная – прерывающиеся последовательности ДНК. Они организованы в модули (М1, М2, М3, М4). Одинаковые модули могут встречаться в разных энхансерах, но для каждого энхансера набор модулей уникален. Модуль это короткая последовательность, состоящая не более чем из 2х витков спирали – примерно 20 нуклеотидных пар. Модули ориентированы перед, за и даже внутри гена. Таким образом М1, М2, М3 и М4 это один энхансер состоящий из 4х модулей. Каждый из них узнаётся своими белками, а они в свою очередь взаимодействуют друг с другом. Если в клетке присутствуют все соответствующие белки, то участку ДНК придаётся определённая конформация и начинается синтез мРНК.

    Актуализация. Все соматические клетки многоклеточного эукариотического организма имеют одинаковый набор генов. Все гены в них работают на фоновом уровне и не имеют фенотипического проявления, а экспрессируются лишь те, у которых все энхансерные модули узнаны своими белками и эти белки взаимодействуют друг с другом.

    Сайленсоры. Это последовательности ослабляющие транскрипцию при взаимодействии с белками. При соответствующем наборе белков экспрессия отдельных генов может быть подавлена.

    Некоторые реперссированые (не экспрессирующиеся) гены активируются каскадом событий, запускаемым повышением температуры или синтезом гормона. Гормон, поступив в кровоток, связывается с рецепторами, проникает в клетку, взаимодействует с клеточными белками, изменяет их конформацию, такой белок проникает в ядро, связывается с регуляторным элементом, происходит инициация транскрипции соответствующих генов. Есть белки, которые взаимодействуя с регуляторными элементами блокируют транскрипцию. Например: белок NRSF блокирует транскрипцию соответствующих генов, в нейронах этот белок не синтезируется и как следствие идёт активная транскрипция.

    Процессинг РНК у эукариот.

    Посттарнскрипционному Ему подвергаются все РНК. Процессинг рРНК и тРНК принципиально не отличается от прокариот.

    Процессинг мРНК эукариот

    1. Кэпирование. Все 100% синтезированных мРНК. Кэп – метилированый гуанозинтрифосфат присоединенный в необычной позиции (5’ к 5‘)и две метилированые рибозы.



    Функции: узнавание кэп-связывающих белков, защита от действии экзонуклеаз

    По мере образования про-мРНК (до 30 нуклеотидов) к 5» концу несущему обязательно пурин (аденин, гуанозин) присоединяется гуанин, который затем метилируется. Участие – гуанинтрансферазы.

    2. Полиаденилирование. Только 95% всех мРНК и именно эти 95% вступают в этап сплайсинга. Другие 5% не подвергаются сплайсингу и эта матричная РНК в которой зашифрованы альфа и бета интерфероны и белки гистоны.

    После завершения синтеза мРНА, полиаденидированию предшествует разрезание специфической эндо кулеазо). Ближе 3» концу про-мРНК, а именно через 20 нуклеотидов после специфической последовательности (ААУАА) синтез безматричный. у каждого вида мРНК полиАхвост определённой длины, покрыт полиАсвязывающими белками. Врея жизни мРНК коррелирует с длиной полиАхвоста.

    3. Сплайсингу подвергаются 95% мРНК. Ф. Шарп, 1978 год. Копии вырезанных интронов гидролизуются до нуклеотидов. Осуществляется матюразами. Иногда в сплайсинге участвует sРНК. Правила: 1. фланкированы GT-AG, 2. Нуерация остаётся, но может быть вместе с интронами вырезан экзон.



    Цис-сплайсинг (внутримолекулярный сплайсинг) осуществляется в ядре. На первом этапе происходит сборка комплекса сплайсинга. Далее происходит расщепление в 5»сайте сплайсинга, в ходе реакции накапливается два продукта – правильно лигированые экзоны и свободный целый интрон в виде структуры типа «лассо». Множество ядерных факторов белков и рибонуклеопротеидных комплексов - Малые ядерные рибонуклеопротеиды. Этот комплекс, который катализирует сплайсинг, называют сплайсингосомой. Она состоит из интрона, связанного минимум с 5ю мя рнп и некоторыми вспомогательными белками. Сплайсингосомы образуются путём спаривания молекул РНК, присоединением белков к РНК и связыванием этих белков друг с другом. Конечным продуктом такого сплайсинга является вырезание интрона и сшивание фланкирующих его экзонов.

    Транс-сплайсинг это пример межмолекулярного сплайсинга. Показан для всех мРНК у трипаносомы и продемонстрирована в опятах ин витро. В ходе него происходит лигирование двух экзонов находящихся в разных молекулах РНК с одновременным удалением фланкирующих их интронов.

    Альтернативный сплайсинг обнаружен от дрозофилы до человека и вирусов и показан он для генов, кодирующих белки, участвующие в формировнаии цитоскелета, мышечных сокращений, сборке мемебранных рецепторов, пептидных гормонов, в промежуточном метаболизме и транспозиции ДНК. В сплайсингосоме этот процесс тоже идёт, связан с ферментами занимающимися полиаденилированием. Таким образом мРНК на всём пути следования до завершения трансляции, защищена от нуклеаз с помощью связанных с ней белков (информоферы). Комплекс мРНК с информоферами с ифнормосомы, плюс сРНК. В составе информосом мРНК живёт от нескольких минут до нескольких дней.

    4. Редактирование

    Сплайсинг тРНК.

    Интроны в генах тРНК локализованы через один нуклеотид после антикодона ближе к 3»концу тРНК. От 14 до 60 нуклеотидов. Механизм сплайсинга тРНК лучше всего изучен у дрожжей, а так же в опытах с другими низшими эукариотами и растениями. Задача вырезания интрона в антикодоновой петле реализуется за счёт участия:

    Эндонуклеаз (узнать интрон и расщепить про-тРНК в обоих сайтах сплайсинга с образованием свободных 3» и 5»концов экзонов)

    Полифункциональный белок (катализирующий все реакции кроме последней – фосфатазной)

    2»фосфатаза (удаляет монофосфат с 2»конца 5»концевого экзона)

    Лигаза (сшивает)

    Сплайсинг рРНК.

    Гены ядерных рРНК низших эукариот содержат особые интроны, которые претерпевают уникальный механизм сплайсинга. Это интроны группы I, их нет в генах позвоночных. Общие свойства: сами катализируют свой сплайсинг (автосплайсинг), информация для сплайсинга содержится в коротких внутренних последовательностях внутри интрона(эти последовательности обеспечивают укладку молекулы с образованием характерной пространственной структуры), этот сплайсинг инициируется свободным гуанозином (экзогенным) или любым из его 5»фосфорилированых производных, конечными продуктами являются зрелая рРНК линейная РНК и кор-интроны (кольцевые)

    Автоспласинг 1982 г., на инфузория, Томас Чек

    Этот процесс чувствителен к ионам магния. Этот сплайсинг показывает что каталитической активностью облажают не только белки но и про-рРНК. Самосплайсинг интронов 1 группы осуществляется последовательно реакций транс-этерификации, где процессы фосфодиэфирного обмена не сопровождаются гидролизом.

    Сплайсинг интронов группы 2 мало распространены, обнаружены в 2х митохондриальных генах дрожжей: ген одной из субъединиц цитохромоксидазы и ген цитохрома Б. так же подвергаются самосплайсингу, но инициация сплайсинга и дёт при участии эндогенного гуанозина, то есть гуанозина находящегося в самом интроне. Высвобожденные интроны – подобны лассо, где 5»концевой фосфат РНК интрона соединён фосфодиэфирной связью с 2»гидроксильной группы внутреннего нуклеотида.

    Регуляция экспрессии генов у эукариот

    Это процесс превращения транскрипта (пре-иРНК, полученной при транскрипции) в зрелую иРНК, пригодную для трансляции. Стадии процессинга:

    1) Кэпирование
    К 5"-концу транскрипта присоединяется кэп («шапочка», англ.), состоящая из модифицированного гуанина.

    2) Полиаденирование
    К 3"-концу транскрипта присоединяется от 100 до 200 адениновых нуклеотидов.

    3) Сплайсинг
    Это процесс вырезания из транскрипта нужных участков и склеивания их между собой. У эукариот из транскрипта выбрасывается в среднем 5/6 длины.

    Зрелая иРНК состоит из 5 участков:

    1) Кэп необходим для

    • экспорта иРНК из ядра;
    • предотвращения разрушения 5"-конца иРНК в результате действия экзонуклеаз;
    • инициации трансляции.

    2) 5"-НТО (нетранслируемая область) кодирует частоту трансляции. К 5"-НТО могут присоединяться репрессоры или активаторы, изменяющие способность данной иРНК соединяться с рибосомой.

    3) Кодирующая область - с неё производится трансляция. Она начинается со старт-кодона АУГ и заканчивается одним из трех стоп-кодонов.

    4) 3"-НТО кодирует скорость разрушения данной иРНК нуклеазами. К 3"-НТО могут присоединяться репрессоры или активаторы, изменяющие скорость разрушения.

    5) Поли-А тоже отвечает за срок жизни иРНК в цитоплазме.

    Именно данная стадия отличает реализацию имеющейся генетической информации у таких клеток, как эукариоты и прокариоты.

    Интерпретация данного понятия

    В переводе с английского данный термин означает «обработка, переработка». Процессинг - это процесс образования зрелых молекул рибонуклеиновой кислоты из пре-РНК. Иначе говоря, это совокупность реакций, которые приводят к трансформации первичных продуктов транскрипции (пре-РНК разных типов) в уже функционирующие молекулы.

    Что касается процессинга р- и тРНК, он чаще всего сводится к отсечению с концов молекул лишних фрагментов. Если говорить об иРНК, то здесь можно отметить, что у эукариот данный процесс протекает многоступенчато.

    Итак, после того, как мы уже узнали, что процессинг - это превращение первичного транскрипта в зрелую молекулу РНК, стоит перейти к рассмотрению его особенностей.

    Основные особенности рассматриваемого понятия

    Сюда можно отнести следующие:

    • модификацию как концов молекулы, так и РНК, по ходу которой к ним присоединяются специфические последовательности нуклеотидов, показывающие место начала (конца) трансляции;
    • сплайсинг - отсечение неинформативных последовательностей рибонуклеиновой кислоты, которые соответствуют интронам ДНК.

    Что касается прокариот, их иРНК не подвержена процессингу. Она имеет способность работать сразу по окончании синтеза.

    Где протекает рассматриваемый процесс?

    У любого организма процессинг РНК протекает в ядре. Он осуществляется посредством особых ферментов (их группой) для каждого отдельно взятого типа молекул. Также процессингу могут быть подвержены такие продукты трансляции, как полипептиды, которые непосредственно считаны с иРНК. Данным изменениям подвергаются так называемые молекулы-предшественники большинства белков - коллагена, иммуноглобулинов, пищеварительных ферментов, некоторых гормонов, после чего начинается реальное их функционирование в организме.

    Мы уже узнали, что процессинг - это процесс образования зрелых РНК из пре-РНК. Теперь стоит углубиться в природу самой рибонуклеиновой кислоты.

    РНК: химическая природа

    Это представляющая собой сополимер пиримидиновых и пуриновых рибонуклеитидов, которые соединены друг с другом, точно так же, как и в ДНК, 3’ - 5’-фосфодиэфирными мостиками.

    Несмотря на то что эти 2 вида молекул схожи, они отличаются по нескольким признакам.

    Отличительные признаки РНК и ДНК

    Во-первых, у рибонуклеиновой кислоты присутствует углеродный остаток, к которому примыкают пиримидиновые и пуриновые основания, фосфатные группы, - рибоза, у ДНК же - 2’-дезоксирибоза.

    Во-вторых, отличаются и пиримидиновые компоненты. Сходными составляющими выступают нуклеотиды аденина, цитозина, гуанина. В РНК вместо тимина присутствует урацил.

    В-третьих, РНК имеет 1-цепочечную структуру, а ДНК - 2-цепочечная молекула. Но в цепи рибонуклеиновой кислоты присутствуют участки с противоположной полярностью (комплементарной последовательностью), благодаря которым ее единичная цепь способна сворачиваться и образовывать «шпильки» - структуры, наделенные 2-спиральными характеристиками (как показано на рисунке выше).

    В-четвертых, ввиду того, что РНК - одиночная цепь, которая комплементарна лишь 1-ой из цепей ДНК, гуанин не обязательно должен присутствовать в ней в таком же содержании, как и цитозин, а аденин - как урацил.

    В-пятых, РНК можно гидролизовать щелочью до 2’, 3’-циклических диэфиров мононуклеотидов. Роль промежуточного продукта в гидролизе играет 2’, 3’, 5-триэфир, неспособный к образованию в ходе аналогичного процесса для ДНК ввиду отсутствия у нее 2’-гидроксильных групп. По сравнению с ДНК щелочная лабильность рибонуклеиновой кислоты выступает полезным свойством и для диагностических целей, и для аналитических.

    Данная последовательность комплементарна генной цепочки (кодирующей), с которой происходит «считывание» РНК. Из-за данного свойства молекула рибонуклеиновой кислоты может специфически связываться с кодирующей цепью, однако не способна этого делать с некодирующей ДНК-цепью. Последовательность РНК, кроме замены T на U, аналогична той, которая относится к некодирующей цепи гена.

    Типы РНК

    Практически все они вовлечены в такой процесс, как Известны следующие типы РНК:

    1. Матричные (мРНК). Это молекулы цитоплазматической рибонуклеиновой кислоты, которые выполняют функции матриц синтеза белка.
    2. Рибосомная (рРНК). Это молекула цитоплазматической РНК, выполняющая роль таких структурных компонентов, как рибосомы (органелл, участвующий в белковом синтезе).
    3. Транспортные (тРНК) . Это молекулы которые принимают участие в переводе (трансляции) информации мРНК в последовательность аминокислот уже в белках.

    Существенная часть РНК в виде 1-ых транскриптов, которые образуются в в том числе клетки млекопитающих, подвержена в ядре процессу деградации, и не играет в цитоплазме информационной или структурной роли.

    В человеческих клетках (культивируемых) найден класс малых ядерных рибонуклеиновых кислот, непосредственно не участвующих в белковом синтезе, однако оказывающих воздействие на процессинг РНК, а также общую клеточную «архитектуру». Их размеры варьируют, они содержат 90 - 300 нуклеотидов.

    Рибонуклеиновая кислота - основной генетический материал у ряда вирусов растений, животных. Некоторые вирусы, содержащие РНК, никогда не проходят такую стадию, как РНК в ДНК. Но все же для многих вирусов животных, к примеру для ретровирусов, характерен обратный перевод их РНК-генома, направляемый РНК-зависимой обратной транскриптазой (ДНК-полимеразой) с формированием 2-спиральной ДНК-копии. В большинстве случаев появляющийся 2-спиральный ДНК-транскрипт внедряется в геном, в дальнейшем обеспечивая экспрессию вирусных генов и наработку новейших копий РНК-геномов (также вирусных).

    Посттранскрипционные модификации рибонуклеиновой кислоты

    Ее молекулы, синтезирующиеся с РНК-полимеразами, всегда функционально неактивны, выступают предшественниками, а именно пре-РНК. Они трансформируются в уже зрелые молекулы лишь после того, как пройдут соответствующие посттранскрипционные модификации РНК - этапы ее созревания.

    Формирование зрелых мРНК начитается в ходе синтеза РНК и полимеразы II на этапе элонгации. Уже к 5’-концу постепенно растущей нити РНК прикрепляется 5’-концом ГТФ, затем отщепляется ортофосфат. Далее гуанин метилируется с появлением 7-метил-ГТФ. Такую особую группу, находящуюся в составе мРНК, именуют «кэпом» (шапочкой либо колпачком).

    В зависимости от разновидности РНК (рибосомные, транспортные, матричные, пр.) предшественники подвергаются различным последовательным модификациям. К примеру, предшественники мРНК подвергаются сплайсингу, метилированию, кэпированию, полиаденилированию, иногда и редактированию.

    Эукариоты: общая характеристика

    Клетка эукариот выступает доменом живых организмов, а в ней содержится ядро. Кроме бактерий, архей, любые организмы являются ядерными. Растения, грибы, животные, включая группу организмов, именуемую протистами, - все выступают эукариотическими организмами. Они бывают как 1-клеточными, так и многоклеточными, однако у всех общий план клеточного строения. Принято считать, что эти настолько непохожие организмы имеют одно и то же происхождение, ввиду чего группа ядерных воспринимается в качестве монофилетического таксона наивысшего ранга.

    На основании распространенных гипотез, эукариоты возникли 1,5 - 2 млрд. лет тому назад. Важная роль в их эволюции отводится симбиогенезу - симбиозу эукариотической клетки, имевшей ядро, способной к фагоцитозу, и бактерий, проглоченных ей, - предшественников пластид и митохондрий.

    Прокариоты: общая характеристика

    Это 1-клеточные живые организмы, которые не обладают ядром (оформленным), остальными мембранными органоидами (внутренними). Единственной крупной кольцевой 2-цепочечной молекулой ДНК, содержащей основную часть генетического клеточного материала, является та, которая не образует комплекс с белками-гистонами.

    К прокариотам относят археи и бактерии, включая цианобактерии. Потомки безъядерных клеток - органеллы эукариот - пластиды, митохондрии. Они подразделяются на 2 таксона в рамках ранга домена: Археи и Бактерии.

    Данные клетки не имеют ядерной оболочки, упаковка ДНК происходит без привлечения гистонов. Тип их питания осмотрофный, а генетический материал представлен одной которая замкнута в кольцо, и имеется лишь 1 репликон. У прокариот остаются органоиды, которые имеют мембранное строение.

    Отличие эукариот от прокариот

    Основополагающая особенность клеток эукариот связана с нахождением в них генетического аппарата, который расположен в ядре, где он защищен оболочкой. Их ДНК линейная, связанная с белками-гистонами, прочими белками хромосом, которые отсутствуют у бактерий. Как правило, в их присутствуют 2 ядерные фазы. Одна имеет гаплоидный набор хромосом, а впоследствии сливаясь, 2 гаплоидные клетки формируют диплоидную, которая содержит уже 2-ой набор хромосом. Бывает и так, что при последующем делении клетка снова становится гаплоидной. Такого рода жизненный цикл, а также диплоидность в целом, не характерны для прокариот.

    Самым интересным отличием является наличие особых органелл у эукариот, которые имеют собственный генетический аппарат и размножаются делением. Эти структуры окружены мембраной. Данными органеллами выступают пластиды и митохондрии. По жизнедеятельности и строению они удивительно схожи с бактериями. Данное обстоятельство натолкнуло ученых на мысль касательно того, что они - потомки бактериальных организмов, которые вступили в симбиоз с эукариотами.

    У прокариот имеется малое количество органелл, ни одна из которых не окружена 2-ой мембраной. В них отсутствует эндоплазматический ретикулум, лизосомы.

    Еще 1 важное отличие эукариот от прокариот - присутствие явления эндоцитоза у эукариот, включая фагоцитоз у большинства групп. Последним называется способность захватывать посредством заключения в мембранный пузырь, а затем переваривать различные твердые частицы. Данный процесс обеспечивает важнейшую защитную функцию в организме. Возникновение фагоцитоза, предположительно, связано с тем, что их клетки имеют средние размеры. Прокариотические же организмы несоизмеримо меньше, ввиду чего в ходе эволюции эукариот возникла потребность, связанная со снабжением клетки значительным количеством пищи. В результате среди них возникли первые подвижные хищники.

    Процессинг как один из этапов биосинтеза белка

    Это второй этап, который начинается после транскрипции. Процессинг белков протекает лишь у эукариот. Это созревание иРНК. Если быть точным, это удаление участков, которые не кодируют белок, и присоединение управляющих.

    Заключение

    В данной статье описано, что представляет собой процессинг (биология). Также рассказано, что такое РНК, перечислены ее типы и посттранскрипционные модификации. Рассмотрены отличительные особенности эукариот и прокариот.

    Напоследок стоит напомнить, что процессинг - это процесс образования зрелых РНК из пре-РНК.

    Сразу после синтеза первичные транскрипты РНК по разным причинам еще не имеют активности, являются "незрелыми" и в дальнейшем претерпевают ряд изменений, которые называются процессинг . У эукариот процессингу подвергаются все виды пре-РНК, у прокариот – только предшественники рРНК и тРНК.

    Процессинг предшественника матричной РНК

    При транскрипции участков ДНК, несущих информацию о белках, образуются гетерогенные ядерные РНК, по размеру намного превосходящие мРНК. Дело в том, что из-за мозаичной структуры генов эти гетерогенные РНК включают в себя информативные (экзоны ) и неинформативные (интроны ) участки.

    1. Сплайсинг (англ. splice – склеивать встык) – особый процесс, в котором при участии малых ядерных РНК происходит удаление интронов и сохранение экзонов.

    Последовательность событий сплайсинга

    2. Кэпирование (англ. cap – шапка) – происходит еще во время транскрипции. Процесс состоит в присоединении к 5"-трифосфату концевого нуклеотида пре-мРНК 5"-углерода N 7 -метил-гуанозина.

    "Кэп" необходим для защиты молекулы РНК от экзонуклеаз, работающих с 5"-конца, а также для связывания мРНК с рибосомой и для начала трансляции.

    3. Полиаденилирование – при помощи полиаденилат-полимеразы с использованием молекул АТФ происходит присоединение к 3"-концу РНК от 100 до 200 адениловых нуклеотидов, формирующих полиадениловый фрагмент – поли(А)-хвост. Поли(А)-хвост необходим для защиты молекулы РНК от экзонуклеаз, работающих с 3"-конца.

    Схематичное представление матричной РНК после процессинга

    Процессинг предшественника рибосомальной РНК

    Предшественники рРНК являются более крупными молекулами по сравнению со зрелыми рРНК. Их созревание сводится к разрезанию прерибосомной РНК на более мелкие формы, которые уже непосредственно участвуют в формировании рибосомы. У эукариот существуют четыре типа рРНК – 5S-, 5,8S-, 18S- и 28S-рРНК . При этом 5S-рРНК синтезируется отдельно, а большая прерибосомная 45S-РНК расщепляется специфичными нуклеазами с образованием 5,8S-рРНК, 18S-рРНК и 28S-рРНК.

    У прокариот молекулы рибосомальной РНК совсем иные по своим свойствам (5S-, 16S-, 23S-рРНК), что является основой изобретения и использования ряда антибиотиков в медицине.

    Процессинг предшественника транспортной РНК

    1. Модификация нуклеотидов в молекуле путем дезаминирования, метилирования, восстановления.
    Например, образование псевдоуридина и дигидроуридина.

    Строение модифицированных уридиловых нуклеотидов

    2. Формирование антикодоновой петли происходит путем сплайсинга